您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 幼儿教育 > 余弦定理教案【5篇】
余弦定理教案【5篇】本编辑对这篇“余弦定理教案【5篇】”文章非常喜欢,认为它十分有价值值得一读。在参考下载后,也请大家分享给朋友。制作教案课件是老师工作的重要组成部分,需要我们静下心来认真写出。而教案和课件也是实现现代教学理念的必备工具。余弦定理教案篇【第一篇】教材分析这是高三一轮复习,内容是必修5第一章解三角形。本章内容准备复习两课时。本节课是第一课时。标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后应落实在解三角形的应用上。通过本节学习,学生应当达到以下学习目标:1通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理解三角形。2能够运用正弦定理、余弦定理等知识和方法判断三角形形状的问题。本章内容与三角函数、向量联系密切。作为复习课一方面将本章知识作一个梳理,另一方面通过整理归纳帮助学生进一步达到相应的学习目标。学情分析学生通过必修5的学习,对正弦定理、余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题,怎样合理选择定理进行边角关系转化从而解决三角形综合问题,学生还需通过复习提点有待进一步理解和掌握。教学目标知识目标:1学生通过对任意三角形边长和角度关系的探索,掌握正弦、余弦定理的内容及其证明方法;会运用正、余弦定理与三角形内角和定理,面积公式解斜三角形的两类基本问题。2学生学会分析问题,合理选用定理解决三角形综合问题。能力目标:培养学生提出问题、正确分析问题、独立解决问题的能力,培养学生在方程思想指导下处理解三角形问题的运算能力,培养学生合情推理探索数学规律的数学思维能力。情感目标:通过生活实例探究回顾三角函数、正余弦定理,体现数学来源于生活,并应用于生活,激发学生学习数学的兴趣,并体会数学的应用价值,在教学过程中激发学生的探索精神。教学方法探究式教学、讲练结合重点难点1、正、余弦定理的对于解解三角形的合理选择;2、正、余弦定理与三角形的有关性质的综合运用。教学策略1、重视多种教学方法有效整合;2、重视提出问题、解决问题策略的指导。3、重视加强前后知识的密切联系。4、重视加强数学实践能力的'培养。5、注意避免过于繁琐的形式化训练6、教学过程体现“实践→认识→实践”。设计意图:学生通过必修5的学习,对正弦定理、余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题,怎样合理选择定理进行边角关系转化从而解决三角形综合问题,学生还需通过复习提点有待进一步理解和掌握。作为复习课一方面要将本章知识作一个梳理,另一方面要通过整理归纳帮助学生学会分析问题,合理选用并熟练运用正弦定理、余弦定理等知识和方法解决三角形综合问题和实际应用问题。数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。虽然是复习课,但我们不能一味的讲题,在教学中应体现以下教学思想:⑴重视教学各环节的合理安排:在生活实践中提出问题,再引导学生带着问题对新知进行探究,然后引导学生回顾旧知识与方法,引出课题。激发学生继续学习新知的欲望,使学生的知识结构呈一个螺旋上升的状态,符合学生的认知规律。⑵重视多种教学方法有效整合,以讲练结合法、分析引导法、变式训练法等多种方法贯穿整个教学过程。⑶重视提出问题、解决问题策略的指导。余弦定理教案篇【第二篇】一、教材分析:(说教材)《余弦定理》是全日制中等国家规划教材(人教版)数学第一册中第六章平面向量第六部分。余弦定理是欧氏空间度量几何的最重要定理,是解斜三角形的重要定理,是整个测量学的基础。余弦定理是勾股定理的推广,可用解析法、向量法等方法证明。余弦定理主要能解决有关三角形的三类问题:1)、已知两边及其夹角,求第三边和其他两个角。2)、已知三边求三个内角;3)、判断三角形的形状。以及相关的证明题。二、说教学思路本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的激发了爱国主义精神。三、说教法在确定教学方法前,首先要求教师吃透教材,选择恰当的教学方法和教学手段把知识传授给学生。本节课主要采用任务驱动法、引导发现法、观察法、归纳总结法、讲练结合法。并采用电教手段使用多媒体辅助教学。1.任务驱动法教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。2.引导发现法、观察法通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。3.归纳总结法学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。4.讲练结合法讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。四、说学法学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。五、教学目标(一)知识目标1、使学生掌握余弦定理及其证明。2、使学生初步掌握应用余弦定理解斜三角形。1(二)能力目标1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。3、通过对余弦定理的推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。(三)德育目标1、培养学生的爱国主义精神、及团结、协作精神。2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。六、教学重点教学重点是余弦定理及应用余弦定理解斜三角形;七、教学难点分析勾股定理的结构特征,从而突破发现余弦定理,应用余弦定理解斜三角形。八、教学过程教学中注重突出重点、突破难点,从五个层次进行教学。创设情境、任务驱动;引导探究、发现定理;完成任务、应用迁移;拓展升华、交流反思;小结归纳、布置作业。(一)、导入1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。2、通过与直角三角形勾股定理引出余弦定理(快乐起点)经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。(二)、新课3.证明猜想,导出余弦定理及余弦定理的变形经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。4.解决二个任务5.操作演练,巩固提高。6.小结:通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。7.作业:分层布置作业,根据不同层次学生将作业分为必做题和选做题。使不同程度的学生都有所提高八、板书设计板书是课堂教学重要部分,为再现知识体系,突出重点,将余弦定理知识体系展示在板书中,利于学生加深印象,理清思路。九、课后反思在教学设计上,采用任务驱动,教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,即提高学生学习的兴趣,又激发求知欲;知识点学习则循序渐进,符合学生的认知特点。经教师启发、诱导,学生通过观察、分析、发现、自主探究、小组协作等方法在获取新知的同时,培养了归纳与猜想、抽象与概括等逻辑思维能力。余弦定理教案篇【第三篇】一、说教材《余弦定理》是必修5第一章《解三角形》的第一节内容,是解决有关斜三角形问题以及应用问题的一个重要定理,它将三角形的边和角有机地联系起来,实现了“边”与“角”的互化,从而使“三角”与“几何”产生联系,为求与三角形有关的量提供了理论依据,同时也为判断三角形形状,证明三角形中的有关等式提供了重要依据。根据上述教材内容分析,考虑到学生已有的`认知结构,心理特征及原有知识水平,我将本课的教学目标定为:⒈知识与技能:掌握余弦定理的内容及公式;能初步运用余弦定理解决一些斜三角形;⒉过程与方法:在探究学习的过程中,认识到余弦定理可以解决某些与测量和几何计算有关的实际问题,帮助学生提高运用有关知识解决实际问题的能力。⒊情感、态度与价值观:培养学生的探索精神和创新意识;在运用余弦定理的过程中,让学生逐步养成实事求是,扎实严谨的科学态度,学习用数学的思维方式解决问题,认识世界;通过本节的运用实践,体会数学的科学价值,应用价值;⒋本节课的教学重点是:运用余弦定理探求任意三角形的边角关系,解决与之有关的计算问题,运用余弦定理解决一些与测量以及几何计算有关的实际问题。⒌本节课的教学难点是:灵活运用余弦定理解决相关的实际问题。⒍本节课的教学关键是:熟练掌握并灵活应用余弦定理解决相关的实际问题。下面为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈余弦定理教案篇【第四篇】如右图,在ABC中,三内角A、B、C所对的边分别是a、b、c.以A为原点,AC所在的直线为x轴建立直角坐标系,于是C点坐标是(b,0),由三角函数的定义得B点坐标是(ccosA,csinA).∴CB=(ccosA-b,csinA).现将CB平移到起点为原点A,则AD=CB.而|AD|=|CB|=a,∠DAC=π-∠BCA=π-C,根据三角函数的定义知D点坐标是(acos(π-C),asin(π-C))即D点坐标是(-acosC,asinC),∴(-acosC,asinC)=(ccosA-b,csinA)由①得asinA=csinC,同理可证asinA=bsinB,∴asinA=bsinB=csinC.由②得acosC=b-ccosA,平方得:a2cos2C=b2-2bccosA+c2cos2A,即a2-a2sin2C=b2-2bccosA+c2-c2sin2A.∴a2=b2+c2-2bccosA.同理可证b2=a2+c2-2accosB,c2=a2+b2-2abcosC.正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法.人教A版教材《数学》(必修5)是用向量的数量积给出证明的,如是在证明正弦定理时用到作辅助单位向量并对向量的等式作同一向量的数量积,这种构思方法过于独特,不易被初学者接受.本文试图通过运用多种方法证明正、余弦定理从而进一步理解正、余弦定理,进一步体会向量的巧妙应用和数学中“数”与“形”的完美结合.c2=a2+b2-2abcosC,b2=a2+c2-2accosB,a2=b2+c2-2bccosA.AD=bsin∠BCA,BE=csin∠CAB,CF=asin∠ABC。=casin∠ABC.AD=bsin∠BCA=csin∠ABC,BE=asin∠BCA=csin∠CAB。的直径,则∠DAC=90°,∠ABC=∠ADC。因为AB=AC+CB,所以jAB=j(AC+CB)=jAC+jCB.因为jAC=0,jCB=|j||CB|cos(90°-∠C)=asinC,jAB=|j||AB|cos(90°-∠A)=csinA.过A作,法一:证明:建立如下图所示的直角坐标系,则A=(0,0)、B=(c,0),又由任意角三角函数的定义可得:C=(bcosA,bsinA),以AB、BC为邻边作平行四边形ABCC′,则∠BAC′=π-∠B,∴C′(acos(π-B),asin(π-B))=C′(-acosB,asinB).根据向量的运算:=(-acosB,asinB),=-=(bcosA-c,bsinA),(2)由=(b-cosA-c)2+(bsin
本文标题:余弦定理教案【5篇】
链接地址:https://www.777doc.com/doc-11411762 .html