您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 空间立体几何精讲课件
第一章空间几何体知识点1:棱柱的结构特征棱柱:一般地,有两个面________,其余各面都是______,并且每相邻两个四边形的公共边都_______,由这些面所围成的多面体叫棱柱。互相平行四边形互相平行DABCEFF’A’E’D’B’C’侧棱侧面底面顶点棱柱中,两个____________叫底面互相平行的面简称___;其余各面叫做_____;底侧面相邻侧面的公共边叫做棱柱的______;侧棱侧面与底面的______叫做顶点公共点知识点1:棱柱的结构特征底面是三角形、四边形、五边形的棱柱分别叫做_____、______、_______。三棱柱四棱柱五棱柱我们用表示_________________,如图所示的六棱柱表示为___________底面各顶点的字母棱柱ABCDEF-A'B'C'D'E'F'直棱柱:_______________的棱柱叫做直棱柱侧棱与底面垂直正棱柱:________________的直棱柱叫做正棱柱底面是正多边形知识点1:棱柱的结构特征例:下列几何体哪些是棱柱?______________(1)(2)(3)(4)(5)(6)(7)解析:考查棱柱的定义(1)(3)(5)知识点1:棱柱的结构特征练习1:以下说法中正确的是_____.(填序号)(1)有两个面平行,其余各面都是四边形的几何体叫做棱柱(2)有两个面平行,其余各面都是平行四边形的几何体叫做棱柱(3)有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫做棱柱;(4)用一个平面去截棱柱,底面与截面之间的部分组成的几何体是棱柱.知识点1:棱柱的结构特征解析:说法(1)不满足侧面是平行四边形,反例如图1说法(2)不满足侧棱互相平行,反例如图2图1图2说法(4)不能保证底面和截面平行,故只有说法(3)正确.故填(3).知识点2:棱锥的结构特征一般地,有一个面是_______,其余各面都是有一个公共顶点的_______,由这些面所围成的______叫棱锥。多边形三角形多面体这个多边形面叫做_________或_____棱锥的底面底_________________________叫做棱锥的侧面有公共顶点的各个三角形面__________________叫做棱锥的顶点各侧面的公共顶点_____________________叫做棱锥的侧棱相邻侧面的公共边底面是三角形、四边形、五边形的棱锥分别叫做____、_____、_____,其中_______又叫四面体三棱锥四棱锥五棱锥三棱锥棱锥也用表示顶点和底面各顶点的_____表示,如图所示四棱锥表示为______知识点2:棱锥的结构特征字母S-ABCDS顶点侧面侧棱底面ABCD正棱锥:如果一个棱锥的底面是_____并且顶点在底面上的____是_________这样的棱锥叫________正多边形射影底面的中心正棱锥正四面体:_________的棱锥叫做正四面体,侧面和底面都是_______各棱长均相等等边三角形知识点2:棱锥的结构特征例:下列说法正确的是________.①一个棱锥至少有四个面;②如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等;③五棱锥只有五条棱;④用与底面平行的平面去截三棱锥,得到的截面三角形和底面三角形相似.解析:主要考查棱锥的结构特征答案:①④知识点2:棱锥的结构特征练习:有下面五个命题:(1)各侧面都是全等的等腰三角形的棱锥是正棱锥;(2)侧棱都相等的棱锥是正棱锥;(3)底面是正方形的棱锥是正四棱锥;(4)正四面体就是正四棱锥;(5)顶点在底面上的射影既是底面多边形的内心,又是底面多边形的外心的棱锥是正棱锥.其中正确命题的个数是()A.1B.2C.3D.4解析:“各侧面都是全等的等腰三角形”并不能保证底面是正多边形,也不能保证顶点在底面内的射影是底面的中心,故不是正棱锥,如图(1)中的三棱锥S-ABC,可令SA=SB=BC=AC=3,SC=AB=1,则此三棱锥的各侧面都是全等的等腰三角形,但它不是正三棱锥,故(1)错误;知识点2:棱锥的结构特征如图(2)中的三棱锥S-ABC,可令SA=SB=BC=1,AB=AC=,BC=1,三条侧棱都相等,但不是正三棱锥,故(2)错误;命题(3)中的“底面是正方形的棱锥”,其顶点在底面内的射影不一定是底面的中心,如图(3),从正方体中截取一个四棱锥D1-ABCD,底面是正方形,但不是正四棱锥,故(3)错误;知识点2:棱锥的结构特征命题(4)中的“正四面体”是正三棱锥,三棱锥共有4个面,所以也叫四面体,故(4)错误命题(5)中的“顶点在底面上的射影既是底面多边形的内心,又是底面多边形的外心”,说明底面是一个正多边形,故(5)正确答案:A知识点2:棱锥的结构特征知识点3:棱台的结构特征棱台:用一个________________的平面去截棱锥,_____________的部分,这样的多面体叫_____,原棱锥的底面和截面分别叫做棱台的______和_______平行于棱锥底面底面和截面之间棱台下底面上底面由三棱锥、四棱锥、五棱锥截得的棱台分别叫做______、______、______,如图所示,四棱台表示为_____________________三棱台四棱台五棱台棱台ABCD-A'B'C'D'ABCDA’B’C’D’下底面侧棱上底面侧面顶点知识点3:棱台的结构特征例:判断下列几何体是不是台体,并说明为什么.点拨:台体是由平行于棱锥和圆锥底面的平面截得的截面和底面之间的几何体,台体有两个明显的结构特征:一是所有的侧棱或母线延长相交于一点;二是截面与底面是平行的相似形解:(1)不是台体,因为各侧棱延长后不交于同一点,不是由棱锥截得;(2)不是台体,因为截面与底面不平行;(3)不是台体,理由同(2).知识点3:棱台的结构特征知识点3:棱台的结构特征练习:下列三种叙述,其中正确的有(1)用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台.(2)两个底面平行且相似,其余的面都是梯形的多面体是棱台.(3)有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.()A.0个B.1个C.2个D.3个知识点3:棱台的结构特征点拨:利用棱台的定义和结构特征知,棱台的两个底面互相平行,而且侧棱延长线交于一点解:(1)不正确,因为根据棱台的定义,要求棱锥底面和截面平行.(2)不正确,因为不能保证各侧棱的延长线交与一点.(3)不正确,因为不能保证等腰梯形的各个腰延长后交与一点.综上,三个命题全部不正确,故选A.知识点4:圆柱的结构特征以________________为旋转轴,_____________旋转形成的面所围成的_______叫做圆柱,________叫圆柱的轴,______________________叫做圆柱的底面;_______________________叫做圆柱的侧面;_______________叫做圆柱侧面的母线。圆柱和棱柱统称为______矩形的一边所在直线其余三边旋转体旋转轴垂直于轴的边旋转而成的圆面平行于轴的边旋转而成的曲面不垂直于轴的边柱体如图:圆柱表示为_____圆柱O'O知识点4:圆柱的结构特征例:下列7种几何体哪些是棱柱和圆柱?点拨:主要考查棱柱和圆柱的结构特征解:棱柱为def;圆柱为a知识点4:圆柱的结构特征练习:下列四种说法:①在圆柱的上、下两底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆柱的两底面全等;③圆柱的轴有无数条;④圆柱的任意两条母线相互平行.其中正确的是_________点拨:考查圆柱的结构特征答案:②④知识点5:圆锥的结构特征以________________________________为旋转轴,_____________________形成的面所围成的______叫做圆锥直角三角形的一条直角边所在直线其余两边旋转旋转体_______和________统称为锥体棱锥圆锥如图,圆锥表示为________圆锥SO知识点5:圆锥的结构特征例:根据下列对于几何结构特征的描述,说出几何体的名称:(1)由7个面围成,其中两个面是互相平行且全等的五边形,其他面都是全等的矩形;(2)一个等腰三角形绕着底边上的高所在的直线旋转180°形成的封闭曲面所围成的图形点拨:考查多面体和旋转体的结构特征答案:(1)直五棱柱(2)圆锥知识点5:圆锥的结构特征练习:以下命题:①直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆锥;③圆柱、圆锥的底面都是圆;其中正确命题的个数为()A.OB.1C.2D.3点拨:主要考查圆柱和圆锥的结构特征答案:C知识点6:圆台的结构特征用____________________的平面去截圆锥,_________之间的部分叫做圆台。________与_________统称为台体OO’平行于圆锥底面底面与截面棱台圆台如图圆台可以表示为____圆台O'O知识点6:圆台的结构特征例:下列四种说法:①在圆柱的上、下两底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下两底面的圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线相互平行.其中正确的是()A.①②B.②③C.①③D.②④点拨:圆锥和圆台的结构特征答案:D知识点6:圆台的结构特征练习:以下命题:①直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为()A.OB.1C.2D.3点拨:考查旋转体的结构特征答案:B知识点7:球的结构特征以______________所在直线为旋转轴,_______旋转一周形成的______叫做球体,简称____。_______叫做球心,__________叫球的半径,_________叫球的直径如图所示,球表示为_________半圆的直径半圆面旋转体球半圆的圆心半圆的半径半圆的直径球O知识点7:球的结构特征例:正方体内接于一个球,过球心作一截面,如图所示,则截面可能的图形是()A.①③④B.②④C.①②③D.②③④点拨:本题主要考查截面问题,关键考虑过球心的正方体截面位置的可能情形解:当截面不平行于任何侧面也不过对角线时得①,当截面过正方体的体对角线时得②,当截面平行于正方体的一个侧面时得③,但无论如何都不能截出④,故答案为:C练习:如图,各棱长都相等的三棱锥内接于一个球,则经过球心的一个截面图形可能是()A.①③B.①②C.②④D.②③知识点7:球的结构特征知识点7:球的结构特征点拨:本题主要考查截面问题,关键考虑过球心的正方体截面位置的可能情形解:①正确,截面过三棱锥底面的一边;②错误,截面圆内三角形的一条边不可能过圆心;③正确,为截面平行于三棱锥底面;④错误,截面圆不可能过三棱锥的底面.故选A。知识点8:空间几何体的三视图由于光的照射,在________物体后面的屏幕上可以留下这个物体的_____,这种现象叫投影。我们把光线叫_____,把留下物体影子的屏幕叫做_____。不透明影子投影线投影面我们把光由_______向外散射形成的_____,叫中心投影一点投影我们把在一束________照射下形成的_____,叫做________。平行投影的投影线是_____,在平行投影中,投影线______投影面时,叫做正投影,否则叫做斜投影。平行光线投影平行光线平行的正对着知识点8:空间几何体的三视图光线从几何体的__________正投影得到的投影图叫做几何体的正视图光线从几何体的__________正投影得到的投影图叫做几何体的侧视图光线从几何体的__________正投影得到的投影图叫做几何体的俯视图前面向后面左面向右面上面向下面几何体的_____、_____、_____统称为几何体的三视图正视图侧视图俯视图知识点8:空间几何体的三视图例1.如图所示的长方体的长、宽、高分别为5cm、4cm、3cm,画出这个长方体的三视图。
本文标题:空间立体几何精讲课件
链接地址:https://www.777doc.com/doc-1520623 .html