您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 苏教版八上数学期中试卷
2015-2016学年江苏省连云港市八年级(上)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1.下列图形是几家电信公司的标志,其中是轴对称图形的是()A.B.C.D.2.如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个3.等腰三角形两边分别为5和10,那么它的周长为()A.20B.25C.15D.20或254.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20B.14C.13D.125.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSSB.SASC.AASD.ASA6.如图,两条笔直的公路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A、B、D.已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是()A.3kmB.4kmC.5kmD.6km7.已知一直角三角形的木板,三边的平方和为1800cm2,则斜边长为()A.30cmB.80cmC.90cmD.120cm8.如图,A,B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC为等腰三角形,满足条件的点C有()A.6个B.7个C.8个D.9个二、填空题(每小题3分)9.在“线段、圆、等边三角形、正方形、角”这五个图形中,对称轴最多的图形是__________.10.已知三角形三边长分别是6,8,10,则此三角形的面积为__________.11.如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=__________度.12.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为__________.13.如图,从电线杆离地面6m处向地面拉一条长10m的固定缆绳,这条缆绳在地面的固定点距离电线杆底部有__________m.14.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是__________(填上你认为适当的一个条件即可).15.如图,已知△ABC和△DBE均为等边三角形,连接AD,CE,若∠BAD=36°,那么∠ACE=__________.16.如图,∠ACB=90°,AD是∠CAB的平分线,BC=12,CD=4.5,则AC=__________.三、解答题17.已知∠O及其边上两点A和B(如图),用直尺和圆规作一点P,使点P到∠O的两边的距离相等,且到点A、B的距离也相等.(保留作图痕迹)18.方格纸中每个小方格都的边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.(1)在图1中确定格点D,并画出一个以A、B、C、D为顶点的四边形,使其为轴对称图形;(2)在图2中画一个格点正方形,使其面积等于10;(3)直接写出图3中△FGH的面积是__________.19.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.20.等腰△ABC中,腰长AB=8cm,BC=5cm,∠CBD=18°,AB的垂直平分线MN交AC于点D.(1)求△BCD的周长;(2)求∠A的度数.21.如图,一个特大型设备人字梁,工人师傅要检查人字梁的AB和AC是否相等,但是他直接测量不方便,身边只有一个刻度尺(长度远远不够).它是这样操作的:①分别在BA和CA上取BE=CG;②在BC上取BD=CF;③量出DE的长a米,FG的长b米,如果a=b,则说明AB和AC是相等的,他的这种做法合理吗?为什么?22.如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求DC的长;(2)判断△ABC的形状,并说明理由.23.如图,△ABC是一张直角三角形纸片,其中∠C=90°,BC=8cm,AB=10cm,将纸片折叠,使点A恰好落在BC的中点D处,折痕为MN.(1)求DC的长;(2)求AM的长.24.已知,如图,AC平分∠BAD,CE⊥AB于E,CD⊥AD于F,且BC=DC.(1)BE与DF是否相等?请说明理由;(2)若DF=1,AD=3,求AB的长;(3)若△ABC的面积是23,△ADC面积是18,直接写出△BEC的面积.25.如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.26.(14分)(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,则∠AEB的度数为__________,线段AD、BE之间的关系__________.(2)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.①请判断∠AEB的度数,并说明理由;②当CM=5时,AC比BE的长度多6时,求AE的长.2015-2016学年江苏省连云港市八年级(上)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1.下列图形是几家电信公司的标志,其中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.【点评】此题考查轴对称图形问题,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.2.如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个【考点】等腰三角形的性质.【分析】由“三线合一”可知(2)(4)正确,由等边对等角可知(3)正确,且容易证明△ABD≌△ACD,可得出答案.【解答】解:∵AB=AC,∴∠B=∠C,∴(3)正确,∵D为BC的中点,∴AD⊥BC,∠BAD=∠CAD,∴(2)(4)正确,在△ABD和△ACD中∴△ABD≌△ACD(SSS),∴(1)正确,∴正确的有4个,故选D.【点评】本题主要考查等腰三角形的性质,掌握等腰三角形底边上的中线、底边上的高、顶角的角平分线相互重合是解题的关键.3.等腰三角形两边分别为5和10,那么它的周长为()A.20B.25C.15D.20或25【考点】等腰三角形的性质;三角形三边关系.【分析】分别从若腰长为5,底边长为10,与若腰长为10,底边长为5,去分析求解即可求得答案.【解答】解:若腰长为5,底边长为10,则5+5=10,不能组成三角形,舍去;若腰长为10,底边长为5,则它的周长为:10+10+5=25.故选B.【点评】此题考查了等腰三角形的性质以及三角形三边关系.注意利用分类讨论思想求解是关键.4.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20B.14C.13D.12【考点】直角三角形斜边上的中线;等腰三角形的性质.【分析】根据AB=AC,可知△ABC为等腰三角形,由等腰三角形三线合一的性质可得AD⊥BC,AD为△ABC的中线,故CD=BC,∠ADC=90°,又因为点E为AC的中点,可得DE=,从而可以得到△CDE的周长.【解答】解:∵AB=AC,∴△ABC是等腰三角形.又∵AD平分∠BAC,∴AD⊥BC,AD是△ABC的中线,点E为AC的中点.∴∠ADC=90°,AC=2DE,AE=EC.∵AB=AC=10,BC=8,∴DE=5,CD=4,CE=5.∴△CDE的周长为:DE+EC+CD=5+5+4=14.故选项A错误,故选项B正确,故选项C错误,故选项D错误.故选B.【点评】本题考查三角形的周长,等腰三角形的相关性质,直角三角形斜边上的中线等于斜边的一半,关键是正确分析题目,从中得出需要的信息.5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSSB.SASC.AASD.ASA【考点】全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.6.如图,两条笔直的公路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A、B、D.已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是()A.3kmB.4kmC.5kmD.6km【考点】菱形的性质;角平分线的性质.【分析】首先连接AC,过点C作CE⊥l2于E,作CF⊥l1于F,由AB=BC=CD=DA,即可判定四边形ABCD是菱形,由菱形的性质,可得AC平分∠BAD,然后根据角平分线的性质,即可求得答案.【解答】解:连接AC,过点C作CE⊥l2于E,作CF⊥l1于F,∵村庄C到公路l1的距离为4千米,∴CF=4千米,∵AB=BC=CD=DA,∴四边形ABCD是菱形,∴AC平分∠BAD,∴CE=CF=4千米,即C到公路l2的距离是4千米.故选B.【点评】此题考查了菱形的判定与性质以及角平分线的性质.解题的关键是正确作出辅助线,得到C到公路l2的距离.7.已知一直角三角形的木板,三边的平方和为1800cm2,则斜边长为()A.30cmB.80cmC.90cmD.120cm【考点】勾股定理.【分析】先求出斜边的平方,进而可得出结论.【解答】解:设直角三角形的斜边长为x,∵三边的平方和为1800cm2,∴x=900cm2,解得x=30cm.故选A.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.8.如图,A,B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC为等腰三角形,满足条件的点C有()A.6个B.7个C.8个D.9个【考点】等腰三角形的判定.【专题】网格型.【分析】根据已知条件,可知按照点C所在的直线分两种情况:①点C以点A为标准,AB为底边;②点C以点B为标准,AB为等腰三角形的一条边.【解答】解:①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.故选D.【点评】此题考查了等腰三角形的判定来解决特殊的实际问题,其关键是根据题意,结合图形,再利用数学知识来求解.注意数形结合的解题思想.二、填空题(每小题3分)9.在“线段、圆、等边三角形、正方形、角”这五个图形中,对称轴最多的图形是圆.【考点】轴对称图形.【分析】根据轴对称图形的概念求解:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:线段是轴对称图形,有2条对称轴;圆是轴对称图形,
本文标题:苏教版八上数学期中试卷
链接地址:https://www.777doc.com/doc-1734346 .html