您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2018高考理科数学选填压轴题专练32题(含详细答案)
高三选填专练第1页共26页第2页共26页1学校年级姓名装装订线一.选择题(共26小题)1.设实数x,y满足,则z=+的取值范围是()A.[4,]B.[,]C.[4,]D.[,]2.已知三棱锥P﹣ABC中,PA⊥平面ABC,且,AC=2AB,PA=1,BC=3,则该三棱锥的外接球的体积等于()A.B.C.D.3.三棱锥P﹣ABC中,PA⊥平面ABC且PA=2,△ABC是边长为的等边三角形,则该三棱锥外接球的表面积为()A.B.4πC.8πD.20π4.已知函数f(x+1)是偶函数,且x>1时,f′(x)<0恒成立,又f(4)=0,则(x+3)f(x+4)<0的解集为()A.(﹣∞,﹣2)∪(4,+∞)B.(﹣6,﹣3)∪(0,4)C.(﹣∞,﹣6)∪(4,+∞)D.(﹣6,﹣3)∪(0,+∞)5.当a>0时,函数f(x)=(x2﹣2ax)ex的图象大致是()A.B.CD.6.抛物线y2=4x的焦点为F,M为抛物线上的动点,又已知点N(﹣1,0),则的取值范围是()A.[1,2]B.[,]C.[,2]D.[1,]7.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n天所织布的尺数为an,则a14+a15+a16+a17的值为()A.55B.52C.39D.268.已知定义在R上的奇函数f(x)满足:当x≥0时,f(x)=x3+x2,若不等式f(﹣4t)>f(2m+mt2)对任意实数t恒成立,则实数m的取值范围是()A.B.C.D.9.将函数的图象向左平移个单位得到y=g(x)的图象,若对满足|f(x1)﹣g(x2)|=2的x1、x2,|x1﹣x2|min=,则φ的值是()A.B.C.D.10.在平面直角坐标系xOy中,点P为椭圆C:+=1(a>b>0)的下顶点,M,N在椭圆上,若四边形OPMN为平行四边形,α为直线ON的倾斜角,若α∈(,],则椭圆C的离心率的取值范围为()A.(0,]B.(0,]C.[,]D.[,]高三选填专练第3页共26页第4页共26页2学校年级姓名装装订线11.如图为中国传统智力玩具鲁班锁,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四棱柱的底面正方形边长为1,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器表面积的最小值为30π,则正四棱柱体的高为()A.B.C.D.512.若函数f(x)=2sin()(﹣2<x<10)的图象与x轴交于点A,过点A的直线l与函数的图象交于B、C两点,则(+)•=()A.﹣32B.﹣16C.16D.3213.已知抛物线方程为y2=4x,直线l的方程为x﹣y+2=0,在抛物线上有一动点P到y轴的距离为d1,P到l的距离为d2,则d1+d2的最小值为()A.B.﹣1C.2D.2+214.已知抛物线方程为y2=8x,直线l的方程为x﹣y+2=0,在抛物线上有一动点P到y轴距离为d1,P到l的距离为d2,则d1+d2的最小值为()A.2﹣2B.2C.2﹣2D.2+215.如图,扇形AOB中,OA=1,∠AOB=90°,M是OB中点,P是弧AB上的动点,N是线段OA上的动点,则的最小值为()A.0B.1C.D.1﹣16.若函数f(x)=log0.2(5+4x﹣x2)在区间(a﹣1,a+1)上递减,且b=lg0.2,c=20.2,则()A.c<b<aB.b<c<aC.a<b<cD.b<a<c17.双曲线﹣=1(a>0,b>0)的左右焦点分别为F1,F2渐近线分别为l1,l2,位于第一象限的点P在l1上,若l2⊥PF1,l2∥PF2,则双曲线的离心率是()A.B.C.2D.18.已知定义在R上的可导函数y=f(x)的导函数为f′(x),满足f′(x)<f(x),且y=f(x+1)为偶函数,f(2)=1,则不等式f(x)<ex的解集为()A.(﹣∞,e4)B.(e4,+∞)C.(﹣∞,0)D.(0,+∞)19.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<x,且f(2)=1,则不等式f(x)<x2﹣1的解集为()A.(﹣2,+∞)B.(0,+∞)C.(1,+∞)D.(2,+∞)高三选填专练第5页共26页第6页共26页3学校年级姓名装装订线20.对任意实数a,b,定义运算“⊕”:,设f(x)=(x2﹣1)⊕(4+x),若函数y=f(x)﹣k有三个不同零点,则实数k的取值范围是()A.(﹣1,2]B.[0,1]C.[﹣1,3)D.[﹣1,1)21.定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式exf(x)>ex+3(其中e为自然对数的底数)的解集为()A.(0,+∞)B.(﹣∞,0)∪(3,+∞)C.(﹣∞,0)∪(0,+∞)D.(3,+∞)22.定义在区间[a,b]上的连续函数y=f(x),如果∃ξ∈[a,b],使得f(b)﹣f(a)=f′(ξ)(b﹣a),则称ξ为区间[a,b]上的“中值点”.下列函数:①f(x)=3x+2;②f(x)=x2;③f(x)=ln(x+1);④中,在区间[0,1]上“中值点”多于1个的函数是()A.①④B.①③C.②④D.②③23.已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导数f′(x)>,则不等式f(x2)<的解集为()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣∞,﹣1]∪[1,+∞)D.(﹣1,1)24.已知函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤),其图象与直线y=﹣1相邻两个交点的距离为π,若f(x)>1对∀x∈(﹣,)恒成立,则φ的取值范围是()A.B.C.D.25.在R上定义运算⊕:x⊗y=x(1﹣y)若对任意x>2,不等式(x﹣a)⊗x≤a+2都成立,则实数a的取值范围是()A.[﹣1,7]B.(﹣∞,3]C.(﹣∞,7]D.(﹣∞,﹣1]∪[7,+∞)26.设f(x)是定义在R上的偶函数,对任意的x∈R,都有f(x+4)=f(x),且当x∈[﹣2,0]时,,若在区间(﹣2,6]内关于x的方程f(x)﹣loga(x+2)=0(0<a<1)恰有三个不同的实数根,则a的取值范围是()A.B.C.D.27.已知函数f(x)=xex﹣ae2x(a∈R)恰有两个极值点x1,x2(x1<x2),则实数a的取值范围为.28.函数y=f(x)图象上不同两点A(x1,y1),B(x2,y2)处的切线的斜率分别是kA,kB,规定φ(A,B)=叫曲线y=f(x)在点A与点B之间的“弯曲度”,给出以下命题:(1)函数y=x3﹣x2+1图象上两点A、B的横坐标分别为1,2,则φ(A,B)>;(2)存在这样的函数,图象上任意两点之间的“弯曲度”为常数;(3)设点A、B是抛物线,y=x2+1上不同的两点,则φ(A,B)≤2;(4)设曲线y=ex上不同两点A(x1,y1),B(x2,y2),且x1﹣x2=1,若t•φ(A,B)<1恒成立,则实数t的取值范围是(﹣∞,1);以上正确命题的序号为(写出所有正确的)29.已知数列{an}是各项均不为零的等差数列,Sn为其前n项和,且.若不等式对任意n∈N*恒成立,则实数λ的最大值为.高三选填专练第7页共26页第8页共26页4学校年级姓名装装订线30.已知点A(0,1),直线l:y=kx﹣m与圆O:x2+y2=1交于B,C两点,△ABC和△OBC的面积分别为S1,S2,若∠BAC=60°,且S1=2S2,则实数k的值为.31.定义在区间[a,b]上的连续函数y=f(x),如果∃ξ∈[a,b],使得f(b)﹣f(a)=f′(ξ)(b﹣a),则称ξ为区间[a,b]上的“中值点”.下列函数:①f(x)=3x+2;②f(x)=x2﹣x+1;③f(x)=ln(x+1);④f(x)=(x﹣)3,在区间[0,1]上“中值点”多于一个的函数序号为.(写出所有满足条件的函数的序号)32.已知函数f(x)=x3﹣3x,x∈[﹣2,2]和函数g(x)=ax﹣1,x∈[﹣2,2],若对于∀x1∈[﹣2,2],总∃x0∈[﹣2,2],使得g(x0)=f(x1)成立,则实数a的取值范围.高三选填专练第9页共26页第10页共26页5学校年级姓名装装订线1.解:由已知得到可行域如图:由图象得到的范围为[kOB,kOC],即[,2],所以z=+的最小值为4;(当且仅当y=2x=2时取得);当=,z最大值为;所以z=+的取值范围是[4,];故选:C.2.解:∵三棱锥P﹣ABC中,PA⊥平面ABC,且,AC=2AB,PA=1,BC=3,设AC=2AB=2x,∴由余弦定理得32=x2+4x2﹣2×,解得AC=2,AB=,∴AB2+BC2=AC2,∴AB⊥BC,构造长方体ABCD﹣PEFG,则三棱锥P﹣ABC的外接球就是长方体ABCD﹣PEFG的外接球,∴该三棱锥的外接球的半径R===,∴该三棱锥的外接球的体积:V==.故选:A.3.解:根据已知中底面△ABC是边长为的正三角形,PA⊥底面ABC,可得此三棱锥外接球,即为以△ABC为底面以PA为高的正三棱柱的外接球∵△ABC是边长为的正三角形,∴△ABC的外接圆半径r==1,球心到△ABC的外接圆圆心的距离d=1,故球的半径R==,故三棱锥P﹣ABC外接球的表面积S=4πR2=8π,故选:C.4.解:∵函数f(x+1)是偶函数,∴其图象关于y轴对称,∵f(x)的图象是由f(x+1)的图象向右平移1个单位得到的,∴f(x)的图象关于x=1对称,又∵x>1时,f′(x)<0恒成立,所以f(x)在(1,+∞)上递减,在(﹣∞,1)上递增,又f(4)=0,∴f(﹣2)=0,∴当x∈(﹣∞,﹣2)∪(4,+∞)时,f(x)<0;当x∈(﹣2,1)∪(1,4)时,f(x)>0;∴对于(x﹣1)f(x)<0,当x∈(﹣2,1)∪(4,+∞)时成立,高三选填专练第11页共26页第12页共26页6学校年级姓名装装订线∵(x+3)f(x+4)<0可化为(x+4﹣1)f(x+4)<0,∴由﹣2<x+4<1或x+4>4得所求的解为﹣6<x<﹣3或x>0.故选D5.解:解:由f(x)=0,解得x2﹣2ax=0,即x=0或x=2a,∵a>0,∴函数f(x)有两个零点,∴A,C不正确.设a=1,则f(x)=(x2﹣2x)ex,∴f'(x)=(x2﹣2)ex,由f'(x)=(x2﹣2)ex>0,解得x>或x<﹣.由f'(x)=(x2﹣2)ex<0,解得,﹣<x<即x=﹣是函数的一个极大值点,∴D不成立,排除D.故选B.6.解:设过点N的直线方程为y=k(x+1),代入y2=4x可得k2x2+(2k2﹣4)x+k2=0,∴由△=(2k2﹣4)2﹣4k4=0,可得k=±1,此时直线的倾斜角为45°.过M作准线的垂线,垂足为A,则|MF|=|MA|,∴=∴直线的倾斜角为45°或135°时,取得最大值,倾斜角为0°时,取得最小值1,∴的取值范围是[1,].故选:D.7.解:设从第2天开始,每天比前一天多织d尺布,则=390,解得d=,∴a14+a15+a16+a17=a1+13d+a1+14d+a1+15d+a1+16d=4a1+58d=4×5+58×=52.故选:B.8.解:∵定义在R上的奇函数f(x)满足:当x≥0时,f(x)=x3+x2,∴f(0)=0,且f′(x)=3x2+2x≥0,即函数f(x)在[0,+∞)上为增函数,∵f(x)是奇函数,∴函数f(x)在(﹣∞,0]上也是增函数,即函数f(x)在(﹣∞,+∞)上为增函数,则不等式f(﹣4t)>f(2m+mt2)等价为﹣4t>2m+mt2对任意实数t恒成立即mt2+4t+2m<0对任意实数t恒成立,若m=0,则不等式等价为4t<0,即t<0,不满足条件.
本文标题:2018高考理科数学选填压轴题专练32题(含详细答案)
链接地址:https://www.777doc.com/doc-1740158 .html