您好,欢迎访问三七文档
作业1一连接如下图所示,承受荷载设计值N为2000kN,钢材为Q235钢,手工焊,不考虑弧坑影响,三面围焊,试确定该连接中所需的最小焊脚尺寸hf。解:每条端缝所承担的力为N1,则w1ffw1ff0.71.220.730016040992fNfhlhh每条侧缝所承担的力为N2,则w1fw1fff0.70.742016047040Nhlfhh由题意,得1224NNN2409924470402000000ffhh解得hf≥7.4mm又由max1.51.5206.7fhtmmmin1.21.21214.4fhtmm(1~2)12(1~2)10~11fhtmmmmmm所以取hf=8mmNNhhff作业2两截面为-20×340的钢板,采用双盖板和普通螺栓拼接(见下图),螺栓为M22,d0=24mm,钢材为Q235,f=205N/mm2,fvb=140N/mm2,fcb=305N/mm2,试问此连接能承受多大的轴心力N?解:⑴由螺栓连接确定N单个螺栓受剪承载力设计值为22322214010106.444bbvvvdNnfkN单个螺栓承压承载力设计值为3222030510134.2bbccNdtfkNmin106.4bNkNmin9106.4957.6bNnNkN⑵由连接板件的净截面强度确定N1-1净截面面积为2(340324)205360nAmm536020510988001098.8nNAfNkN故该连接最大轴心力为957.6kN。作业3验算轴心受压柱的强度和稳定,柱高为9m,两端铰接,在两个三分点处均有侧向支撑以阻止其在弱轴方向过早失稳,采用型号为HM294×200×8×12的Q235热轧中翼缘H型钢,其受轴心力N=1000kN,截面内有两个安装螺栓,孔径为d0=23mm(如图所示)。解:(1)截面特性查型钢表得HM294×200×8×12的截面特性如下:A=73.03cm2,ix=12.5cm,iy=4.69cm(2)验算强度2n730382526903Amm22n1000000144.9/215/6903NNmmfNmmA(满足)(3)验算构件整体稳定依题意可知:0x9.0lm,0y3.0lm,x0xx900012572li(a类)查得0.829y0yy300046.964li(b类)查得0.786221000000174.2/215/0.7867303NNmmfNmmA(满足)经验算,该柱的强度和整体稳定满足要求。50020205004002525400810作业4试计算下图所示两种焊接工字钢截面(截面面积相等)轴心受压柱所能承受的最大轴心压力设计值和局部稳定,并作比较说明。柱高10m,两端铰接,翼缘为焰切边,钢材为Q235。解:第一种截面:(1)算截面特性2500850020224000Amm334(500540492500)/121436000000xImm34220500/12416666667yImm/244.6xxiIAmm,/131.8yyiIAmm(2)由整体稳定确定承载力1000040.9[]150244.6x,1000075.9[]150131.8y由maxx75.9查b类截面得0.71530.71524000205103518NAfkN(3)验算局部稳定1max500823512.3(100.1)220(100.175.9)17.6ybtf(满足)0max50023562.5(250.5)8(250.575.9)62.95wyhtf(满足)故该截面柱承载力为3518kN。第二种截面:(1)计算截面特性224000Amm334(400450390400)/12957500000xImm34225400/12266666667yImm/199.7xxiIAmm,/105.4yyiIAmm(2)由整体稳定确定承载力1000050.07[]150199.8x,1000094.9[]150105.4y由maxx94.9查b类截面得0.58930.58924000205102898NAfkN(3)验算局部稳定1max400102357.8(100.1)225(100.194.9)19.5ybtf(满足)0max40023540(250.5)10(250.594.9)72.5wyhtf(满足)故该截面柱承载力为2898kN。作业5一焊接工字型截面等截面简支梁,跨中承受集中荷载P=300kN(包含梁自重),钢材为Q235,梁的跨度和几何尺寸如图所示,支座处和集中荷载作用处都设置支承加劲肋,试验算该梁的正应力、剪应力和折算应力是否满足要求,并指明相应的计算位置。解:(1)计算截面特性:2600823401212960Amm;3384(340624332600)/129.0810xImm;6322.9110xxIWmmh33401230630081501608480Smm(2)验算正应力:梁跨中集中力作用点处弯矩最大,正应力最大值位于该截面的最外翼缘处。max300860044PlMkNm因为1340813.813235/13212ybft,故1.0x622max660010206.2/215/1.02.9110xxMNmmfNmmW(满足)(3)验算剪应力:梁中所有截面上的剪力相等,其剪应力最大值位于腹板中部。max30015022PVkN322max815010160848033.2/125/9.08108vxwVSNmmfNmmIt(满足)(4)折算应力:梁跨中集中力作用点处既有弯矩又有剪力,腹板与翼缘相交处既有较大剪应力又有正应力,需验算其折算应力31340123061248480Smm21300206.2198.3/312Nmm或621860010300198.3/9.0810xMyNmmI21124848033.225.8/1608480Nmm或32max1815010124848025.8/9.08108xwVSNmmIt222222113198.3325.8200.0/1.1236.5/NmmfNmm(满足)203.3!作业6焊接简支工字型梁(图示)上翼缘受均布荷载作用,其设计值q=40kN(包括自重),跨度为10m,跨中5m处梁上翼缘有简支侧向支撑,材料为Q345,f=310N/mm2,试验算该梁的整体稳定是否满足要求?解:(1)判断是否需要验算整体稳定因为1150002013250lb,应验算整体稳定。(2)计算截面特性2600825012210800Amm334(250624242600)/12705888000xImm34212250/1231250000yImm/53.8yyiIAmm32/7058880002/6242262462xxWIhmm15lm,500092.953.8y又已知1.15b,0b21222432023514.443201080062492.9122351.151022624624.462434592.91.260.6ybbbxyytAhWhf'1.070.282/1.260.846b22401050088qlMkNm622'50010261.2/310/0.8462262462bxMNmmfNmmW故梁满足稳定要求。
本文标题:钢结构作业-答案
链接地址:https://www.777doc.com/doc-1985961 .html