您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 第2,3章课后作业答案
2-1、已知32)1(62)(ssssF,利用拉氏反变换求)(tf。解:1)1()1()(12233sCsCsCsF5)62()()1(21313limlimsssFsCss0)22()]()1[(limlim1312sdtsFsdCss1)]()1[(2123211limdssFsdCs11)1(5)(3sssFtteettf225)(补充题:系统在输入信号)(1)(1)(rtttt作用下,测得响应为tettc109.0)9.0()(,又知系统的初始状态均为零状态,试求系统的传递函数。解:109.09.01)(11)(22ssssCsssR1010)()()(ssRsCsG2-3求如图所示系统的传递函数模型。1R2RiUoUC题2-3图解:csRRRRscRRRsRsU1122122111)()(csRRRRcsRRRcsRRRRcsRR2121212212112)1(2-4运算放大器在自动控制系统中得到广泛应用,它可以方便地获得所需的传递函数,求图中的传递函数,且说明属于什么环节。)(tr2R1RC)(tc)(a)(tr2R1R)(tc3RC)(b题2-4图(a)解:scRscRsuRsucr11)()(221)1()()(212csRRRsusurc一阶惯性(b)设一个中间变量,则031211211RuuRudtduCRuRucR121RRuuR,)()(121sURRsUR1u)()11()(1323sURRcsRsUC12332213233132)11()()()(1)()11(RRRcsRRRRRRcsRsUsUsURsURRcsRcc2-5把题2-5图(a)化成单位前向通路形式,如图题2-5图(b),求Gr。解:)(a)(b)(sR1G1H)(sC)(sR)(sC)(sGX题2-5图)(111)(111sGHGGsX)(11111sGGGHGX11111GHGGGX2-6简化题2-6图,写出传递函数。)(sR1G2G)(sC题2-6图解:)(sR)(sC!GG22121)()(GGGsRsC2-7已知题2-7图,求传递函数。1G2G3G4G)(1sC)(2sC)(1sR)(2sR题2-7图解:)(sR)(sC1GG4GG231_-1)(sR)(sC4GG1GG322_-1)(sR)(sC1GG4GG231_-1)(sR)(sC3GG1GG422_-243211111)()(GGGGGsRsC4321431211)()(GGGGGGGsRsC4321321121)()(GGGGGGGsRsC43213221)()(GGGGGsRsC2-8简化题2-8图,并求传递函数C(s)/R(s)。4G)(sR)(sC1G2H2G3G1H解:4G)(sR)(sC1G2H2G1H13GG2211221231)()(HGGHGGGGGsRsC2-9求下图所示系统的传递函数。)(sR)(sCsK11sK21s10s5___解:设ssKH))(1(1011ssKH))(1(522)(sR)(sC2H1Hab121x2x-)(1sXa1H2H12_)(1sY)(1sX1H)(1sY2H2H_2121111)1()()(HHHHsXsY2112221)1()()(HHHHsXsY21212112112)()()()()(HHHHHHsXsYsYsXsY2121212121212121212131212112)()(HHHHHHHHHHHHHHHHHHHHsRsC将1H和2H带入上式得:50)155050()150510(15)510()()(2122121221sKKsKKKKssKKsRsC2-13试简化题2-13图所示的各方框图并求出它们的传递函数)()(sRsC。题2-13图1G2G5G)(sR)(sC3G4G)(b1G2G)(sR3G4G)(sC)(a)(sR)(sC2G1G3G4G)(sN)(c解:(a)4G(sR)(sC1G3G2G4G)4(sR)(sC1G3G2G)14GG3214121)()()(GGGGGGsRsC(b)4G)(sR1G2G3G5GC(s)4G)(sR)(sC1G2G3G35GG5214323211)()(GGGGGGGGGsRsC(c)求下图所示系统的传递函数,包括C(s)/R(s),C(s)/N(s),E(s)/R(s),E(s)/N(s).解:)(sR)(sC2G1G3G4G)(sN)(c21211)()(GGGGsRsC_)(sN)(sCG1G23G4G_)(sN)(sC-G1G23GG1G2G42142131)()(GGGGGGsNsC_)(sN)(sEG1G24GG3_)(sN)(sEG1G24GG321341)()()(GGGGsNsE,2111)()(GGsRsE2-14求图示系统的传递函数)()(sRsC。)(sR)(sC1G2G3G1H2H4G(sR)(sC1G2G3G1H2H2G4G)1G2G)(sR)(sCG4/G2+G3H2/G11H)(sR)(sC[G1G2(G3+G4/G2)]/(1+H1G1G2)H2/G1)(sR)(sCG(s)122114132121141321*111)(GHGGHGGGGGGGHGGGGGsG2423221143211)(HGHGGGGHGGGG413212423221143211)()(1)()()(GGGGGHGHGGGGHGGGGsGsGsRsC第三章:3-1控制系统的微分方程为)()()(tkrtcdttdcT,其中T=2s,K=10,试求:(1)系统在单位阶跃函数的作用下,9)(1tc时t1的值。(2)系统在单位脉冲函数的作用下,1)(1tc时的t1的值。解:(1))(1)(1)()()()()1(sRTsksCTsksRsCskRsCTs6.49.01)1(109)()1(10)1()(1)()(1)(1221211teetCeektCssRttRtttTt(2)2.32.0ln22.0152)(1222teeekeTktktttTt3-2设系统的单位阶跃响应为)1(5)(5.0tetc,求这个系统的过渡过程时间。解:)1(5)(5.0tetc,K=5,T=2,%)2(84%)5(63sTtsTtss3-3设一单位负反馈的开环传递函数为)5(4)(sssG,求这个系统的单位阶跃响应。解:25.15224454)(22nnnsss1过阻尼)(13134)(14311341)4)(1(4)(4teethsssssssHtt3-4二阶系统的闭环传递函数25625)(2sss求单位阶跃响应的各项指标:sprttt,,和%解:6.0625nn欠阻尼%48.9%)4(13)3(79.04)2(55.0)1(8.06.012eetststnsdpr46.0156.0arccos2ddrt3-5如图所示系统的性能指标如何?如果要使5.0,可用测速发电机反馈如图(b),问k等于多少?此时系统的性能指标如何?是否改善了?)(sR)(sC-)1(10ss(a))(sR)(sC)1(10ssks(b)(a)图中1010)(2sss%6161.0%6158.05.016.310212estsnnn(b)图中10)1(10)(2skss%3.16%5.09.116.35.03216.016.35.02116.321estkkdsnn3-6如图确定使自然角频率为6rad/s,阻尼比等于1的1k和tk值,如果输入信号)(1)(ttr,试计算该系统的各项性能指标。)(sR)(sCskt1k)9.0(25ss、解:112125259.025)(kskksskst6n则:44.11k31.0122259.01tntkkk8.06175.4st无超调。3-7设二阶系统的单位阶跃响应曲线如图,若其为单位负反馈,求)(sGk解:357.0)1(44.186.912.114.32.113.0222212e62.33127.011.014.31.012nnpt)24(1130)(sssG3-8系统结构如图所示,若系统在单位阶跃输入下,其输出以sradn2的频率做等幅振荡,试确定此时的k和a的值)(sR)(sC-12)1(23sasssk解:kskasssks1)2()1()(230123sssskakaka1)2(11kk12010)2(12kasakak412aksakkka4101)2(43,2042akaaak3-10对图所示系统,试求(1)hk为多少时,阻尼比5.0?(2)单位阶跃响应的超调量%和过渡过程时间st;(3)比较加入skh1与不加入skh1时系统的功能。)(sR)(sC-)2(10ssskh1解:(1)10)102()1(10)(2sksskshh5.0116.016.11010*5.0*22102'hhnhkkk原316.0101(2)stns9.110*5.033%3.165.0'stns33%35316.0(3)加入skh1后系统的超调量降低,快速性较好。3-11利用Routh判据,判断具有下列特征方程式的系统的稳定性(1)32()209100Dssss3210ssss12041009100稳。(3)25103)(234sssssD01234sssss225.37.41032152不稳。(4)8863)(234sssssD01234sssss88.03103108868稳定。3-13(1))5)(1()1()(ssssksGkksssssks54)1()(230123sssskk432041kk5320k。(2)ksssks54)(230123sssskk4204105k020kk不存在。结论:加入比例微分环节改善了稳定性。3-15已知单位负反馈系统的开环传递函数)256)(4)(2()(2ssssksG试确定k为多大时使系统等幅振荡,并求出其振荡频率解:ksssssD)256)(86()(22=kssssssss200488150366256223234=kssss200198691223401234sssssk2005.52k2005.5219812k2005.5219812k200691系统振荡,则2400+12k-198*52.5=0K=666.25jsks1.402005.5223-18)(sR)
本文标题:第2,3章课后作业答案
链接地址:https://www.777doc.com/doc-2154531 .html