您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 燃烧理论第六讲燃烧方法.
第六章燃气燃烧方法燃气燃烧的动力区和扩散区燃料燃烧所需要的全部时间通常由两部分合成,即氧化剂和燃料之间发生物理性接触所需要的时间τph和进行化学反应所需要的时间τch。亦即τ=τph+τch对气体燃料来说,τph≪τch,则实际上τ≈τch。这时,称燃烧过程在动力区进行。反之,如果τph≫τch,则τ≈τph。称燃烧过程在扩散区进行。显然,当燃烧过程在动力区进行时,燃烧速度将受化学动力学因素的控制,例如反应物的活化能、温度和压力等。若燃烧过程在扩散区进行,则燃烧速度将取决于流体动力学的一些因素,例如气流速度和气体流动过程中所遇到的物体的尺寸、形状等。在中间区,τph≈τch。情况较为复杂。为此,将燃烧分为扩散燃烧和预混(部分预混和全预混)燃烧。一、扩散式燃烧燃气中不含氧化剂(即α′=0),则燃烧所需的氧气将依靠扩散作用从周围大气获得。这种燃烧方式称为扩散式燃烧。在层流状态下,扩散燃烧依靠分子扩散作用使周围氧气进入燃烧区,在湍流状态下,则依靠湍流扩散作用来获得燃烧所需的氧气。由于分子扩散进行得比较缓慢,因此层流扩散燃烧的速度取决于氧的扩散速度。燃烧的化学反应进行得很快,因此火焰焰面厚度很小。在焰面上α正好等于1,而不可能大于或小于1。内侧为燃气和燃烧产物相互扩散的区域,外侧为空气和燃烧产物相互扩散的区域。扩散火焰的形状为圆锥形。这是因为前期混合需要时间,使焰面拉长。后期不断燃烧,纯燃气的体积越来越小。层流扩散火焰结构1—外侧混合区;2—内侧混合区;Cg—燃气浓度;Ccp—燃烧产物浓度;CO2—氧气浓度层流扩散火焰的相似利用相似关系来讨论层流扩散火焰的基本规律管l和管2两个相似的扩散燃烧装置,燃气和空气之间的扩散率(即单位时间从空气中扩散到燃气中去的氧气量)应当与浓度梯度成正比:ddCMDFr式中D——扩散系数;F——垂直于扩散方向两股气流的接触面积dC/dr——径向浓度梯度。2dLD111222FdLFdL1212ddddCdrCdr11112112222122MDdLdDLMDdLdDL两种情况下的扩散率之比应当等于燃气流量之比气流速度增加时扩散火焰长度和燃烧工况的变化1—火焰长度终端曲线;2—层流火焰终端曲线层流扩散火焰的长度与气流速度成正比,而在湍流区火焰长度与气流速度无关。在燃气湍流自由射流中,轴线上的燃气浓度Cg与射流出口处的原始浓度C1之比在锋面上燃气浓度和空气浓度之比应近似地等于化学当量比l:n,由此可得湍流扩散火焰长度lfg10.700.29CasCr式中s——距出口的轴向距离;a——湍流结构系数;r——射流喷口的半径。g1g1CCCnf0.7010.29rlna二、扩散火焰中的多相过程碳氢化合物进行扩散燃烧时,可能出现两个不同的区域:一个是真正的扩散火焰,它是一个很薄的反应层;另一个是光焰区,其中有固体碳粒燃烧。在火焰内存在一个只有燃气没有氧气的高温地带,是燃气进行热分解的区域。分解区内发生着碳氢化合物的脱氢过程和碳原子的积聚过程。最后生成相当多的固体碳粒,像雾一般分散在气体中。这些碳粒接触到氧气,便出现固体和气体之间的燃烧过程,呈现出明亮的淡黄色的光焰,如果碳粒来不及燃尽而被燃烧产物带走,就形成所谓煤烟。碳粒燃烧经历吸附——反应——解析的过程2xyxy21COCO2COCO+COxymn不同压力下乙炔在空气中的扩散火焰1—扩散火焰;2—光焰区层流扩散火焰中气体浓度和温度的变化燃气火焰的辐射在民用燃气设备上,由于燃烧空间有限,燃烧温度不高,光焰的出现容易形成黑烟。但在各种工业炉窑、锅炉等热工设备上,却需要利用燃料燃烧时火焰的辐射传热。不发光的透明火焰的辐射,主要是高温气体的辐射。对于黄色、光亮而不透明的光焰来说,火焰内的游离碳粒子产生的固体辐射占有很大的比例。因此,两种不同火焰的辐射机理是不同的。燃气火焰一般来说是不发光的透明火焰,即使扩散火焰也是弱的光焰。透明火焰主要靠烟气中的CO2、水蒸气等在高温下的辐射。由于气体辐射仅在特定的窄波段内进行,与具有连续发射光谱的发光固体颗粒相比,燃气火焰的辐射能力是很弱的。为了增加燃气火焰的辐射能力,曾有人试验过在气体燃料中加入一些液体燃料的燃烧方法。图示为国际火焰基金会的研究结果。加入重油对辐射率的影响A—重油100%B—重油40%C—重油20%D—重油10%E—重油0%三、部分预混层流火焰1855年本生创造出一种燃烧器,燃烧前预先混入一部分燃烧所需空气,火焰变得清洁,燃烧得以强化。习惯上又称大气式燃烧。本生火焰由内锥体和外锥体组成。在内锥表面火焰向内传播,而未燃的燃气—空气混合物则不断地从锥内向外流出。在气流的法向分速度等于法向火焰传播速度之处便出现一个稳定的焰面。在内锥焰面上仅仅进行部分燃烧过程。所得的中间产物穿过内锥焰面,在其外部形成扩散火焰。一次空气系数大,则外锥小,碳氢化合物在反应区内转化为含氧的醛、乙醇等,反之则可能在高温下分解,形成碳粒,成为发光的扩散火焰。本生燃烧器示意图蓝色锥体表面上的速度分析层流时,沿管道横截面上气体的速度按抛物线分布。截面上任一点的气流法向分速度均等于法向火焰传播速度,故火焰能稳定在该点。另一方面,该点还有一个切向分速度,在焰面上不断进行着下面质点对上面质点的点火。在火焰根部,靠近壁面处气流速度逐渐减小,火焰传播速度因管壁散热也减小了。可以肯定,必定存在一个υ=S的点,而且没有分速度。这就是说,在燃烧器出口的周边上,存在一个稳定的水平焰面,它是空气-燃气混合物的点火源,又称点火环。四、部分预混层流火焰的稳定如果燃烧强度不断加大,点火环就逐渐变弱,直至消失,火焰脱离燃烧器出口,在一定距离以外燃烧,称为离焰。若气流速度再增大,火焰就被吹熄,称为脱火。一次空气系数越大,混合物的脱火极限越小。燃烧器出口直径越大,气流向周围的散热越少,火焰传播速度就越大,脱火极限就越高。如果进入燃烧器的燃气流量不断减小,内锥越来越低,最后由于气流速度小于火焰传播速度,火焰将缩进燃烧器,称为回火。回火极限与火焰传播速度曲线相似。在其他条件相同时,火焰传播速度越大,回火极限速度也越大。燃烧器出口直径较小时,管壁散热作用增大,回火可能性减小。为了防止回火,最好采用小直径的燃烧孔。当燃烧孔直径小于极限孔径时,便不会发生回火现象。当一次空气系数较小时,由于碳氢化合物的热分解,形成碳粒和煤烟,会引起不完全燃烧和污染。所以,部分预混式燃烧的一次空气系数不宜太小。天然气和空气的燃烧稳定范围1一光焰曲线;2—脱火曲线3—回火曲线;4—光焰区;5一脱火区6一回火区周边速度梯度理论在燃烧器出口的周边处,火焰传播速度和气流速度都是在变化的。气流速度梯度1、2、3分别为产生回火;产生回火的极限位置;火焰稳定三种情况。第三种情况,气流速度大于燃烧速度,火焰底部被推离,火孔壁面对火焰底部的冷却作用减弱,燃烧速度增大,焰面底部能够重新稳定。当周边速度梯度再继续增大,使火焰进一步被推离火孔。这时由于可燃混合物物与空气的相互扩散过强,使得气流边界层附近的可燃混合物被空气过分稀释,导致该处的燃烧速度下降。这时在火焰底部任何一点上的气流速度都大于燃烧速度,于是火焰就被无限制推离火孔,产生脱火。回火和脱火的图解(a)燃烧器出口以内的情况;(b)燃烧器出口以上的情况;(c)焰面位置1—回火;2—回火极限;3—火焰稳定;4—脱火极限;5—脱火A、B、C—当焰面在ABC三个位置时的燃烧速度曲线火焰拉伸理论60年代后期吕特对火焰底部离火孔端面的距离d进行了分析。发现有时气流速度增加到出现脱火,d并无显著增加,有时气流速度并未增加,d却有所增加。为此提出火焰拉伸理论代替周边速度梯度理论来解释脱火现象。当未燃气体具有速度梯度时,则从某单位面积焰面传给未燃气体的热量并不全部返回到该单位面积焰面,而是有一部分热量从低流速区向高流速区转移。这样,低流速区的火焰温度就降低,该区的燃烧速度也相应降低。而且,某一段火焰的气流速度梯度越大,这一段火焰低流速区的火焰温度也降得越多,熄火作用也越厉害。这显然是一种可能导致脱火的机理。与这种影响大小有关的因素是度量预热区厚度的参数δph(δph=λ/Snρcp)。对于一定的速度梯度来说,δph越大,则在δph这段距离中气流速度的增值也越大,熄火作用也越厉害。此外,对于同样的和δph而言,某一段火焰本身的气流速度υ越大,速度的增值dυ对于υ的影响就越小,其熄火影响也越小。因此可以认为,由于速度梯度而引起的熄火影响与、δph成正比,与υ成反比。无因次数K称为卡洛维兹(Karlovitz)拉伸系数。K值越大,速度梯度的熄火作用越厉害。当K值达到极限时,一个自动加速的熄火过程就开始,并最后导致一部分火焰的熄灭。phddKr当火焰在具有速度梯度的运动气流中传播时,火焰成构成凸向气流的曲面,因此面向未燃气体的焰面面积就大于面向已燃气体的焰面面积。亦即,当焰面向未燃气体传播时,其面积被拉伸。对于曲面火焰而言,焰面每单位面积所需加热的未燃气体体积比平面火焰的大,因而火焰温度会降低。焰面面积被拉伸得越多,火焰温度就会降得越低,甚至导致火焰的熄灭。K的极限值就代表火焰尚能适应的最大面积增值。脱火是由于火焰稳定区的K值达到极限值Kb,导致火焰熄灭而引起的。对于某一种燃气-空气混合物来说,不论其浓度比例、温度、压力和火孔孔径如何变化,Kb应大致为定值。bb2pngKcS式中gb—脱火极限速度梯度Kb随F的变化式中F—燃气相对浓度;k—系数。无外焰时,k取零;有外焰时,k取1。周边速度梯度的增加既引起火焰拉伸,又引起周围空气对可燃混合物的稀释。火焰拉伸脱火理论强调了前者,而周边速度梯度理论则强调了后者。6.4b0.2311KFk辅助火焰作点火源1—火孔;2—小孔;3—环形缝隙五、部分预混湍流火焰的稳定预混湍流火焰工作的稳定区可能全部消失,或者变得很窄,要使燃烧器正常工作只有采用人工的稳焰方法。可改变气流速度,用流体动力学方法进行稳焰;也可改变火焰传播速度,用热力学和化学方法进行稳焰。最常用的方法是在燃烧器出口处设置一个点火源。点火源可以是连续作用的人工点火装置,也可以使炽热的燃烧产物流回火焰根部而形成点火源。热烟气的回流往往通过在燃气-空气混合物的气流中设置钝体火焰稳定器来实现。钝体稳焰原理以简化热理论为例来分析火焰稳定的条件在回流区内燃气燃烧产生的热量为这些热量使回流区气体温度从T1升高到T钝体稳焰的物理模型n2w0wwexp4EQkCdlHRT2假定回流与主流气体的定压容积比热相当,则由混合区内混合的情况又可写出以上各式中C——回流区内反应物浓度;n——化学反应级数;H——燃气热值;dw——回流区直径;lw——回流区长度;υw——回流区内的平均回流速度;cp——气体定压容积比热;T——离开回流区时的温度;Tl——流入回流区时的温度。x——回流气体与主流气体的比例。p0pp11cTxcTxcT101TTxTTn0w1wpERTxkClHeTTc1wERTnAepl1ERTnAepdEnRTWpe2WSpE2n-2RTSpe合并各式,消去Qw与T后得到考虑到浓度和密度与压力成正比,回流区速度与主气流速度也成比例,上式可简化成还可以用火焰传播速度S来代替ERTe得脱火的临界条件:当气体流速比式中数值大时,发生脱火。当气流速度小于对应数值时,不会发生脱火,即火焰保持稳定。2ASpd钝体稳焰器的脱火曲线六、完全预混式燃烧进行完全预混式燃烧的条件是:第一、燃气和空气在着火前预先按化学当量比混合均匀;第二、设置专门的火道(或燃烧室),使燃烧区内保持稳定的高温。燃气-空气混合物到达燃烧区后能在瞬时间燃烧完毕。火焰很短甚至看不见,所以又称无焰燃烧。完全预混可燃物的燃烧速度很快
本文标题:燃烧理论第六讲燃烧方法.
链接地址:https://www.777doc.com/doc-2219677 .html