您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 理学 > 动点问题和压轴题训练
DPCNBMAEDFPCABOFEDCBA动点问题和压轴题训练动态几何问题是近几年各地中考试题常见的压轴试题,它能考查学生的多种能力,有较强的选拔功能。解这类题目要“以静制动”,即把动态问题,变为静态问题来解。动点题一般方法是针对这些点在运动变化的过程中相伴随着的数量关系(如等量关系、变量关系)、图形位置关系(如图形的特殊状态、图形间的特殊关系)等进行研究考察.抓住变化中的“不变量”,以不变应万变。首先根据题意理清题目中两个变量X、Y的变化情况并找出相关常量。第二,按照图形中的几何性质及相互关系,找出一个基本关系式,把相关的量用一个自变量的表达式表达出来,然后再根据题目的要求,依据几何、代数知识解出。第三,确定自变量的取值范围,画出相应的图象。解答综合、压轴题,要把握好以下各个环节:1.审题:这是解题的开始,也是解题的基础.一定要全面审视题目的所有条件和答题要求,以求正确、全面理解题意,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计.审题思考中,要把握“三性”,即明确目的性,提高准确性,注意隐含性.解题实践表明:条件暗示可知并启发解题手段,结论预告并诱导解题方向,只有细致地审题,才能从题目本身获得尽可能多的信息.这一步,不要怕慢,其实“慢”中有“快”,解题方向明确,解题手段合理得当,这是“快”的前提和保证.否则,欲速则不达.2.寻求合理的解题思路和方法:破除模式化、力求创新是近几年中考数学试题的显著特点,解答题体现得尤为突出,因此,切忌套用机械的模式寻求解题思路和方法,而应从各个不同的侧面、不同的角度,识别题目的条件和结论,认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,谨慎地确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃.动点问题练习题1、如图,点P是边为1的菱形ABCD对角线AC的一个动点,点M、N分别是AB、BC的中点,则MP+NP的最小值是;2、若点P为边长为5的等边三角形内的一个动点,作PD⊥BC于点D,PE⊥AC于点E,PF⊥AB于点F,则PD+PE+PF=;反之,若PD=6,PE=10,PF=8,则等边△ABC的面积为;3、如图,平行四边形ABCD中,对角线AC、BD相交于点O,若E、F是线段AC上的两个动点,分别从A、C两点以相同的速度1㎝/s向C、A运动,若BD=12㎝,AC=16㎝,当t时,四边形DEBF为平行四边形;当时间t=时,四边形DEBF为矩形。4.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为524个平方单位?yxOPQAB5.在边长为4的正方形ABCD中.点P在AB上从A向B运动,连接DP交AC于点Q.(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的61;(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形6.平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,E为BC边上的一个动点(不与B、C重合).过E作直线AB的垂线,垂足为F.FE与DC的延长线相交于点G,连结DE,DF..(1)求证:ΔBEF∽ΔCEG.(2)当点E在线段BC上运动时,△BEF和△CEG的周长之间有什么关系?并说明你的理由.(3)设BE=x,△DEF的面积为y,请你求出y和x之间的函数关系式,并求出当x为何值时,y有最大值,最大值是多少?MBDCEFGxA7.半径为2.5的⊙O中,直径AB的不同侧有定点C和动点P.已知BC:CA=4:3,点P在AB上运动,过点C作CP的垂线,与PB的延长线交于点O.(l)当点P与点C关于AB对称时,求CQ的长;(2)当点P运动AB到的中点时,求CQ的长;(3)当点P运动到什么位置时,CQ取到最大值?求此时CQ的长.函数图像中点的存在性问题主要特征:利用已知条件先求出函数的解析式,然后在函数图像上探求符合几何条件的点。简单一点的题目就是用待定系数法直接求出函数的解析式。复杂一点的题目,先根据图像给定的数量关系,运用数形结合的思想,求出点的坐标,再利用待定系数法求函数解析式。存在性问题经常和动点问题结合在一起。1.(10广东深圳)如图,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(-2,0),B(-1,-3).(1)求抛物线的解析式;(2)点M为y轴上任意一点,当点M到A、B两点的距离之和为最小时,求此时点M的坐标;(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标.xyMCBDAO图2xyCB_D_AO2.如图,二次函数y=x2axb的图像与x轴交于A(21,0)、B(2,0)两点,且与y轴交于点C;(1)求该拋物线的解析式,并判断△ABC的形状;(2)在x轴上方的拋物线上有一点D,且以A、C、D、B四点为顶点的四边形是等腰梯形,请直接写出D点的坐标;(3)在此拋物线上是否存在点P,使得以A、C、B、P四点为顶点的四边形是直角梯形?若存在,求出P点的坐标;若不存在,说明理由。yABCOx3.如图11,在直角梯形OABC中,CB∥OA,90OAB,点O为坐标原点,点A在x轴的正半轴上,对角线OB,AC相交于点M,4OAAB,2OACB.(1)线段OB的长为,点C的坐标为;(2)求△OCM的面积;(3)求过O,A,C三点的抛物线的解析式;(4)若点E在(3)的抛物线的对称轴上,点F为该抛物线上的点,且以A,O,F,E四点为顶点的四边形为平行四边形,求点F的坐标.yxMCBOAMxyQPODCBA4.称轴与x轴交于点D.点M从O点出发,以每秒1个单位长度的速度向B运动,过M作x轴的垂线,已知抛物线224233yxx的图象与x轴交于A,B两点,与y轴交于点C,抛物线的对交抛物线于点P,交BC于Q.(1)求点B和点C的坐标;(2)设当点M运动了x(秒)时,四边形OBPC的面积为S,求S与x的函数关系式,并指出自变量x的取值范围.(3)在线段BC上是否存在点Q,使得△DBQ成为以.BQ..为一腰...的等腰三角形?若存在,求出点Q的坐标,若不存在,说明理由.5.在平面直角坐标系中,二次函数cbxxy2的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POP/C,那么是否存在点P,使四边形POP/C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.yxyx备用图图9EMRQPBAABO'oo6.在直角坐标系xoy中,O是坐标原点,点A在x正半轴上,OA=312cm,点B在y轴的正半轴上,OB=12cm,动点P从点O开始沿OA以32cm/s的速度向点A移动,动点Q从点A开始沿AB以4cm/s的速度向点B移动,动点R从点B开始沿BO以2cm/s的速度向点O移动.如果P、Q、R分别从O、A、B同时移动,移动时间为t(0<t<6)s.(1)求∠OAB的度数.(2)以OB为直径的⊙O‘与AB交于点M,当t为何值时,PM与⊙O‘相切?(3)写出△PQR的面积S随动点移动时间t的函数关系式,并求s的最小值及相应的t值.(4)是否存在△APQ为等腰三角形,若存在,求出相应的t值,若不存在请说明理由.7.将一矩形纸片OABC放在平面直角坐标系中,(00)O,,(60)A,,(03)C,.动点Q从点O出发以每秒1个单位长的速度沿OC向终点C运动,运动23秒时,动点P从点A出发以相等的速度沿AO向终点O运动.当其中一点到达终点时,另一点也停止运动.设点P的运动时间为t(秒).(1)用含t的代数式表示OPOQ,;(2)当1t时,如图1,将OPQ△沿PQ翻折,点O恰好落在CB边上的点D处,求点D的坐标;(3)连结AC,将OPQ△沿PQ翻折,得到EPQ△,如图2.问:PQ与AC能否平行?PE与AC能否垂直?若能,求出相应的t值;若不能,说明理由.图1OPAxBDCQy图2OPAxBCQyE
本文标题:动点问题和压轴题训练
链接地址:https://www.777doc.com/doc-2627490 .html