您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 其它文档 > 2015年05月29九年级数学中考复习
第1页(共25页)2015年05月29日13912793057的初中数学组卷一.填空题(共8小题)1.(2014•菏泽)下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n﹣2个数是(用含n的代数式表示)2.(2013•台州)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1,类似的,①对81只需进行次操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是.3.(2014•黔东南州)在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则PA+PB的最小值为.4.(2014•锦州)菱形ABCD的边长为2,∠ABC=60°,E是AD边中点,点P是对角线BD上的动点,当AP+PE的值最小时,PC的长是.第2页(共25页)5.(2011•黔东南州)顺次连接一矩形场地ABCD的边AB、BC、CD、DA的中点E、F、G、H,得到四边形EFGH,M为边EH的中点,点P为小明在对角线EG上走动的位置,若AB=10米,BC=米,当PM+PH的和为最小值时,EP的长为.6.(2009•陕西)如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.7.(2014•绵阳)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为.8.(2011•防城港)如图,等边△ABC绕点B逆时针旋转30°时,点C转到C′的位置,且BC′与AC交于点D,则的值为.二.解答题(共10小题)9.(2013•自贡)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.第3页(共25页)(1)求该校的大小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?10.(2013•温州)某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图,趣题巧解,数学应用,魔方复原,每个项目得分都按一定百分比折算后记入总分,下表为甲,乙,丙三位同学得分情况(单位:分)七巧板拼图趣题巧解数学应用魔方复原甲66898668乙66608068丙66809068(1)比赛后,甲猜测七巧板拼图,趣题巧解,数学应用,魔方复原这四个项目得分分别按10%,40%,20%,30%折算记入总分,根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包含80分)的学生获一等奖,现获悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问甲能否获得这次比赛的一等奖?11.(2011•贵阳)童星玩具厂工人的工作时间为:每月22天,每天8小时.工资待遇为:按件计酬,多劳多得,每月另加福利工资500元,按月结算.该厂生产A、B两种产品,工人每生产一件A种产品可得报酬1.50元,每生产一件B种产品可得报酬2.80元.该厂工人可以选择A、B两种产品中的一种或两种进行生产.工人小李生产1件A产品和1件B产品需35分钟;生产3件A产品和2件B产品需85分钟.(1)小李生产1件A产品需要分钟,生产1件B产品需要分钟.(2)求小李每月的工资收入范围.12.(2014•盘锦)某电视台为了了解本地区电视节目的收视率情况,对部分观众开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了下面两幅不完整的统计图.根据要求回答下列问题:(1)本次问卷调查共调查了多少名观众?(2)补全图1中的条形统计图;并求出图2中收看“综艺节目”的人数占调查总人数的百分比;(3)求出图2中“科普节目”在扇形图中所对应的圆心角的度数;第4页(共25页)(4)现有喜欢“新闻节目”(记为A)、“体育节目”(记为B)、“综艺节目”(记为C)、“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用“列表法”或“画树形图”的方法求出恰好抽到喜欢“新闻节目”和“体育节目”两位观众的概率.13.(2013•娄底)2013年娄底市教育局对九年级学生的信息技术、物理实验操作、化学实验操作成绩进行抽样调查,成绩评定A、B、C、D四个等级.现抽取1000名学生成绩进行统计分析(其中A、B、C、D分别表示优秀、良好、合格、不合格四个等级),其相关数据统计如下:(1)请将上表空缺补充完整;(2)全市共有40000名学生参加测试,试估计该市九年级学生信息技术成绩合格以上(含合格)的人数;(3)在这40000名学生中,化学实验操作达到优秀的大约有多少人?14.(2008•淄博)2007年12月31日,国务院办公厅关于限制生产销售使用塑料购物袋的通知要求:从2008年6月1日起,在全国范围内禁止生产,销售,使用厚度小于0.025毫米的塑料购物袋(以下简称超薄塑料购物袋).2007年底,某校初四年级一班的同学到学校附近的农贸市场调查了这个市场里100家商户中的10家.这10家商户平均每天送出的超薄塑料购物袋数量分别为(单位:把):4538575634(1)请分别写出这组数据的众数,中位数;(2)如果要选择一种统计图来表示这10家商户送出的超薄塑料购物袋的情况,在条形统计图,折线统计图,扇形统计图中你会选择哪一个;(3)已知一把超薄塑料购物袋有50个.通过对样本的计算,估计该农贸市场一年要送出多少个超薄塑料购物袋?(一年按350个营业日计算)结果用科学记数法表示.15.(2014•自贡)如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;第5页(共25页)(2)若∠ABE=55°,求∠EGC的大小.16.(2014•重庆)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.17.(2010•日照)如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)证明:∠BAE=∠FEC;(2)证明:△AGE≌△ECF;(3)求△AEF的面积.18.(2000•荆门)已知:E是正方形ABCD的边BC上的中点,F是CD一点,AE平分∠BAF.求证:AF=BC+CF.第6页(共25页)第7页(共25页)2015年05月29日13912793057的初中数学组卷参考答案与试题解析一.填空题(共8小题)1.(2014•菏泽)下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n﹣2个数是(用含n的代数式表示)考点:算术平方根.菁优网版权所有专题:规律型.分析:观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n﹣1行的数据的个数,再加上n﹣2得到所求数的被开方数,然后写出算术平方根即可.解答:解:前(n﹣1)行的数据的个数为2+4+6+…+2(n﹣1)=n(n﹣1),所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数的被开方数是n(n﹣1)+n﹣2=n2﹣2,所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数是.故答案为:.点评:本题考查了算术平方根,观察数据排列规律,确定出前(n﹣1)行的数据的个数是解题的关键.2.(2013•台州)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1,类似的,①对81只需进行3次操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是255.考点:估算无理数的大小.菁优网版权所有专题:压轴题;新定义.分析:①根据规律依次求出即可;②要想确定只需进行3次操作后变为1的所有正整数,关键是确定二次操作后数的第8页(共25页)大小不能大于4,二次操作时根号内的数必须小于16,而一次操作时正整数255却好满足这一条件,即最大的正整数为255.解答:解:①[]=9,[]=3,[]=1,故答案为:3;②最大的是255,[]=15,[]=3,[]=1,而[]=16,[]=4,[]=2,[]=1,即只需进行3次操作后变为1的所有正整数中,最大的正整数是255,故答案为:255.点评:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力.3.(2014•黔东南州)在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则PA+PB的最小值为.考点:轴对称-最短路线问题;一次函数图象上点的坐标特征.菁优网版权所有分析:利用一次函数图象上点的坐标性质得出OA′=1,进而利用勾股定理得出即可.解答:解:如图所示:作A点关于直线y=x的对称点A′,连接A′B,交直线y=x于点P,此时PA+PB最小,由题意可得出:OA′=1,BO=2,PA′=PA,∴PA+PB=A′B==.故答案为:.点评:此题主要考查了利用轴对称求最短路线以及一次函数图象上点的特征等知识,得出P点位置是解题关键.第9页(共25页)4.(2014•锦州)菱形ABCD的边长为2,∠ABC=60°,E是AD边中点,点P是对角线BD上的动点,当AP+PE的值最小时,PC的长是.考点:轴对称-最短路线问题;菱形的性质.菁优网版权所有专题:几何综合题.分析:作点E关于直线BD的对称点E′,连接AE′,则线段AE′的长即为AP+PE的最小值,再由轴对称的性质可知DE=DE′=1,故可得出△AE′D是直角三角形,由菱形的性质可知∠PDE′=∠ADC=30°,根据锐角三角函数的定义求出PE的长,进而可得出PC的长.解答:解:如图所示,作点E关于直线BD的对称点E′,连接AE′,则线段AE′的长即为AP+PE的最小值,∵菱形ABCD的边长为2,E是AD边中点,∴DE=DE′=AD=1,∴△AE′D是直角三角形,∵∠ABC=60°,∴∠PDE′=∠ADC=30°,∴PE′=DE′•tan30°=,∴PC===.故答案为:.点评:本题考查的是轴对称﹣最短路线问题,熟知菱形的性质及锐角三角函数的定义是解答此题的关键.第10页(共25页)5.(2011•黔东南州)顺次连接一矩形场地ABCD的边AB、BC、CD、DA的中点E、F、G、H,得到四边形EFGH,M为边EH的中点,点P为小明在对角线EG上走动的位置,若AB=10米,BC=米,当PM+PH的和为最小值时,EP的长为m.考点:轴对称-最短路线问题;三角形中位线定理;矩形的性质.菁优网版权所有专题:计算题;压轴题.分析:由点E、F、G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,得到FH与EG互相垂直平分,则四边形EFGH为菱形,H点与F点关于EG对称,连HF交EG于O点,连FM交EG于P′、连HP′,则P′H=P′F,即P′H+P′M=FM,根据两点之间线段最短得到当动点P运动到点P′的位置时,PM+PH的和为最小值.由AB=10,BC=10得AE=5,AH=5,根据勾股定理计算出EH=10,则EM=5,∠AHE=30°,∠EHF=60°,得到△EHF为等边三角形,于是有FM⊥EH,根据含30°的直角三角形三边的关系得到MP′=EM=,EP′=2MP′=,由此得到答案.解答:解:∵点E、F、G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,∴FH与EG互相垂直平分,∴四边形EFGH为菱形,H点与F点关于EG对称,连HF交EG于O点,连
本文标题:2015年05月29九年级数学中考复习
链接地址:https://www.777doc.com/doc-2946949 .html