您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 2015年全国高考数学试题分类汇编§11.3随机抽样用样本估计总体
11.3随机抽样、用样本估计总体考点一随机抽样1.(2015北京,4,5分)某校老年、中年和青年教师的人数见下表.采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为()类别人数老年教师900中年教师1800青年教师1600合计4300A.90B.100C.180D.300答案C2.(2015湖南,2,5分)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是()A.3B.4C.5D.6答案B3.(2015四川,3,5分)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法答案C10.(2015福建,13,4分)某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为.答案25考点二统计图表1.(2015课标Ⅱ,3,5分)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关答案D2.(2015陕西,2,5分)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93B.123C.137D.167答案C8.(2015湖北,14,5分)某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a=;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为.答案(1)3(2)6000考点三样本的数字特征1.(2015重庆,4,5分)重庆市2013年各月的平均气温(℃)数据的茎叶图如下:0891258200338312则这组数据的中位数是()A.19B.20C.21.5D.23答案B2.(2015山东,6,5分)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③B.①④C.②③D.②④答案B7.(2015广东,12,5分)已知样本数据x1,x2,…,xn的均值=5,则样本数据2x1+1,2x2+1,…,2xn+1的均值为.答案1110.(2015广东,17,12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?解析(1)由已知得,20×(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)=1,解得x=0.0075.(2)由题图可知,面积最大的矩形对应的月平均用电量区间为[220,240),所以月平均用电量的众数的估计值为230;因为20×(0.002+0.0095+0.011)=0.450.5,20×(0.002+0.0095+0.011+0.0125)=0.70.5,所以中位数在区间[220,240)内.设中位数为m,则20×(0.002+0.0095+0.011)+0.0125×(m-220)=0.5,解得m=224.所以月平均用电量的中位数为224.(3)由题图知,月平均用电量为[220,240)的用户数为(240-220)×0.0125×100=25,同理可得,月平均用电量为[240,260),[260,280),[280,300]的用户数分别为15,10,5.故用分层抽样的方式抽取11户居民,月平均用电量在[220,240)的用户中应抽取11×=5(户).考点四统计与概率2.(2015课标Ⅱ,18,12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100]频数2814106(1)作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.解析(1)通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记CA表示事件:“A地区用户的满意度等级为不满意”;CB表示事件:“B地区用户的满意度等级为不满意”.由直方图得P(CA)的估计值为(0.01+0.02+0.03)×10=0.6,P(CB)的估计值为(0.005+0.02)×10=0.25.所以A地区用户的满意度等级为不满意的概率大.3.(2015安徽,17,12分)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.解析(1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,所以a=0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在[50,60)的有50×0.006×10=3(人),记为A1,A2,A3;受访职工中评分在[40,50)的有50×0.004×10=2(人),记为B1,B2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},又因为所抽取2人的评分都在[40,50)的结果有1种,即{B1,B2},故所求的概率为P=.
本文标题:2015年全国高考数学试题分类汇编§11.3随机抽样用样本估计总体
链接地址:https://www.777doc.com/doc-2949921 .html