您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 其它文档 > 《林业试验设计与数据分析》讲义
1林业试验设计与数据分析绪论一、科学试验与试验统计⒈科学试验(实验)是一种计划好的调查研究,是以获得新的事实、证实或否定以前的实验结论为基本目的。⒉试验统计是认识事物本质的工具⒊统计分析是研究事物间关系的手段⒋试验要讲科学性①试验思想的先进性②试验条件的典型性③试验数据的准确性④试验结果的重演性二、试验设计的意义与作用⒈田间试验是林业科研活动的重要内容,科学合理的实验设计,是获得有价值的数据,进而取得正确研究结果与结论的基础。⒉林业试验用地地形复杂,面积大,立地条件变化大。在林业田间试验中,科学地控制环境,具有极大的重要性。⒊林业生产周期长,不正确的试验设计,将浪费大量宝贵的时间,造成无可挽回的损失。三、林业试验数据处理的若干问题⒈从观测数据中提取尽可能多的有价值的信息,得出正确的结论,是一项专业性很强的工作。⒉林业试验往往规模大,数据多,借助电子计算机和先进的统计软件及其它应用软件,可提高工作效率。⒊试验统计的理论和方法正在发展中。2第一章林业试验方法第一节田间试验的概念田间试验的主要内容是讨论如何合理地安排试验以及处理分析试验结果,它是生物统计学的重要方面。田间试验是农林学科中重要的实验环节,是计划好的调查研究和实践运筹,它不仅能评审试材的优劣,试验条件的好坏,而且能回答试验的精确度、可靠性及资料量。田间试验的创始人,英国的费舍(R.A.Fisher,1890--1962),其试验理论的主要观点:①试验要有明确的目的,其目的必须建立在经济效益方面;②为减少试验中各种误差,应采用随机化原理;③为了提高试验精度,应该有充分的重复次数,选择最有效的实验配置和最可靠的分析方法,等。从林木遗传改良为例,可以看出正确的田间试验十分必要。要将选出的或创造出来的优良遗传材料放到最合适的环境条件中去,必须进行适应性试验。这里存在着三大因素:遗传组成,环境条件和基因型与环境的互作反应。由于林木个体大,个体发育周期长,材料占地面积大,变化着的立体空间生态因子复杂,就带来林木育种工作中鉴定、选择和各种田间评审的困难性。G(遗传组成)→G1(群体)+G2(家系)+G3(个体)E(环境条件)→E1(地理位置)+E2(海拔)+E3(生态)+E4(立地类型)P(表现型值)=G(基因型值)+E(环境误差)假设有两个不同的表现型,它们的组成分别为:P1=G1+E1和P2=G2+E2,如果E1和E2不同的话,就很难估测G1和G2的差异及其程度。如果E1和E2相同或相似,其间的误差可以估算,则G1和G2的差异就容易估算出来。第二节田间试验三原则一、试验误差例:某树种的一批种子进行千粒重检验,用两种方法:①抽样四次,各称一次,千粒重为5.29克,5.36克,5.38克,5.31克,平均5.34克。②抽样一次,称四次,千粒重:5.49克,5.47克,5.48克,5.49克,平均重5.48克。评价:①法:存在抽样误差和操作误差,可靠性(accuracy)较高,有一定的精确度;②法:存在称重操作误差,精确度(precision)较高,可靠性低。试验误差的分类:⒈系统误差,或称片面误差:是指试材差异,观测误差,技术与操作的不一致等原因造成的误差。这类误差只要严格按试验操作要求统一尺度,是比较容易克服的。⒉偶然误差∶是由试验地的差异造成的,包括土壤差异,病虫害差异以及其他微生境的差异,是较难消除的一类差异。它是衡量试验精度的误差。只要找到误差的起因,就可分成条件误差和随机误差。试验中最难克服的是土壤,为了提高试验的可靠性(准确性)和精度,理解必须选择好试验地,正确理解并执行田间试验的原则。条件误差──由试验或生产条件所造成的误差。3随机误差──受偶然因素影响与测量不准确所造成的误差叫随机误差。二、田间试验三原则⒈重复⒉随机化⒊局部控制重复∶在一个试验中每种处理(品种或措施)共同出现的次数。重复的作用在于降低试验误差,提高试验的准确性(可靠性),估算试验误差。试验误差的大小与重复次数的平方根成反比。重复的次数必须根据试验要求的精度,条件差异,试验地面积,小区面积等多方面来考虑。严格来讲,重复次数的多少,应该由试验材料差异,精度和准确性等试验因子来决定。随机化∶是指处理的重复与小区的排列次序随机化。这样的排列使试验中的数据和统计值都建立在公平无偏的基础上,使试验误差的计算量可靠可信。从一个总体中随机地抽取样本,对每样本随机地施以不同的处理,把每个处理随机地设置在试验单元或小区,这样就可以认为是满足了观测值及误差独立分布的前提,使差异显著性的检验有效。实现随机化的方法∶查随机数表,计算器或计算机产生随机数,抽签(抓阄)等。局部控制是在重复或区组里力求使条件一致起来。同一重复内的条件尽可能一致,不同重复间条件允许不一致。局部控制的关键是土壤差异的控制。第三节常用的试验设计本节参考书目∶北京林学院主编.1980.数理统计,中国林业出版社丁希泉编著.1986.农业应用回归设计,吉林科学技术出版社洪伟.1993.林业试验设计与方法,北京科学技术出版社茆诗松.2003.统计手册,科学出版社一、有关试验设计的几个概念⒈处理(treatment)──参试树种、种源、家系、无性系、品种,不同营林措施等。⒉重复(replication)──在一个试验中每种处理共同出现的次数。⒊区组(block)──局部控制的地块。完全区组∶区组内包含所有的处理。区组数=重复数不完全区组∶区组内只包含部分处理。区组数重复数⒋小区(plot)──某个处理在区组内占据的一个小地块。是实施试验的最小单位。二、常用的试验设计方法(一)、完全随机设计(TheCompleteRandomizationDesign)把试验处理包括重复数混合在一起,完全随机地设置小区。每个试验处理的重复数可以相同,也可以不同。例如,有A、B、C、D四个处理,三次重复的完全随机设计。做法∶⒈将处理连同重复顺序排列,编成4×3=12个序号∶4〖小区代号〗A1A2A3B1B2B3C1C2C3D1D2D3〖序号〗123456789101112⒉用随机数表等方法产生12个随机数,并将随机数由小到大排号∶〖随机号数字〗300664993389278465472811〖排列号〗417125113108692⒊将处理重复序号排入相应的“排列号”之中,即完成了完全随机设计的排号工作,依次安排试验。完全随机设计可避免某些处理经常相邻而带来的系统误差。它适用于处理数较少,试验地整齐均一的情况,这在林业上很难满足。许多学者认为随机区组设计优于完全随机设计。(二)、随机区组设计(随机完全区组设计∶TheRandomizedCompleteBlockDesign)每一重复组成一个区组,重复与区组同义,每个区组包括所有处理(是谓完全区组),每个处理在一个区组内只占有一个小区,各区组以及每个区组内各小区均随机排列。这是最常用的田间试验设计。步骤∶⒈确定试验处理数和重复(区组)数;⒉将处理排号,抽取相同数量的随机号作一次重复的排序,有多少次重复就要抽多少组随机号,组成相应的小区排列次序;⒊将所有重复的位次按随机办法编号,就成为区组号,记Ⅰ区组、Ⅱ区组等;⒋制成试验方案,包括设计图;⒌将设计方案落实到试验现场。以10个处理三个重复的试验为例,在课堂上完成设计。RCB设计的变化:不连续单株小区,随机轮换区组等。(三)、拉丁方设计(TheLatinSquareDesign)利用拉丁方安排试验的试验设计。拉丁方设计也是完全区组设计,是对随机区组设计的一种改进。在一个拉丁方中,将处理从两个方向排列成区组,k个处理排成k行k列,每个处理在各行各列中只出现一次。拉丁方设计的特点是处理数、重复数、横行数和直行数都相同,即直行、横行都可构成一个区组,可以实行两个方向的条件控制。优点∶对土壤差异实行双重控制,准确性较高。缺点∶横、直区组小区数必须相等,伸缩性较小,缺乏随机区组设计的灵活性,且要求条件一致。只应用于规模较小,试验地条件较一致的试验。做法∶⒈确定一个标准方,即横行和直行均为顺序排列的拉丁方。⒉随机调换标准方各横行位置。⒊随机决定各直行位置。例∶一个5×5的拉丁方设计,标准方为∶5ABCDEBCDEACDEABDEABCEABCD(在课堂上完成横行、直行的随机排列)(四)、正交拉丁方设计(TheCrossedLatinSquareDesign)利用正交拉丁方安排试验的试验设计。若要考察的因素不是一个而是两个、三个甚至更多,但供试单元并不能增加或增加很少,这时可利用正交拉丁方,在拉丁方设计的基础上不增加试验次数的条件下引进另一个或一些因素,仍能作出相应分析。所谓正交拉丁方是指两个或几个阶数相同的拉丁方之间呈正交关系。任意两个互相正交的拉丁方,一个用希腊字母表示,一个用拉丁字母表示,当两个拉丁方重叠起来时,任一希腊字母与每一拉丁字母均只相遇一次。如下图∶ABCDE+ⅠⅡⅢⅣⅤ=ⅠAⅡBⅢCⅣDⅤEBCDEAⅤⅠⅡⅢⅣⅤBⅠCⅡDⅢEⅣACDEABⅣⅤⅠⅡⅢⅣCⅤDⅠEⅡAⅢBDEABCⅢⅣⅤⅠⅡⅢDⅣEⅤAⅠBⅡCEABCDⅡⅢⅣⅤⅠⅡEⅢAⅣAⅤCⅠD说明∶①n个处理就有n-1个正交拉丁方;②不是任何拉丁方都有与之正交的拉丁方,如6×6的拉丁方则不存在与之正交的拉丁方;③各阶拉丁方所具有的正交拉丁方可以《数理统计》(北京林学院主编)附表19上查得;④从附表19上查得的号码应与试验各因素的处理号随机对应,即必须进行随机化处理。另外,正交拉丁方一般用于两个因素的试验,若安排三个或三个以上的因素,则不仅设计复杂,而且在作方差分析时,随因素增加剩余项自由度减少很多,使得分析可靠度减少很快。同时安排三个或三个以上因素的试验可采用正交设计。(五)、平衡不完全区组设计(TheBalancedIncompleteBlockDesign,简称BIB设计)在随机区组设计中,当处理数较多时常常会出现一个区组不能容纳全部处理的情形,这是可以用平衡不完全区组(BIB)设计。BIB设计各区组内的小区数小于试验的处理数,即每个区组不能包含所有的处理(不完全区组),每种处理在同一区组内最多只出现一次,而且在整个试验中有相同的被测次数,此外,任意一对处理都有在同一区组内相遇的机会,而且在整个试验中,相遇的次数相等(平衡)。BIB设计需要满足的条件∶设处理数为v,每区组内小区数为k,每处理重复数为r,区组数为b,则整个试验总的小区数n=vr=bk,每对处理在同一区组内同时出现的次数为∶=rkv()11综合起来,BIB设计的必要条件是b,k,v,r,这五个参数都必须是正整数,并且满足∶6⑴vr=bk⑵rv≤bkv⑶(v-1)=r(k-1)上述几个条件,(2)中的v≤b在林木田间试验中很难得到满足,故(3)也难以得到满足。标准的平衡不完全区组设计方案可查数理统计(北京林学院主编)附表20。设计步骤∶1.确定v,r,k,计算出b。2.查“平衡不完全区组设计表”确定各区组内处理的组成。3.对各区组内处理做随机排列。4.对各区组进行随机排列。##当处理数为某数的平方,即v=p2,b=p(p+1),k=p=v,r=k+1=p+1时,称为平衡格子设计。(六)、裂区设计(TheSplit-PlotDesign)裂区设计适用于参试因素需区别对待时的多因素试验。如有两个因素要区别对待,可先将第一级因素(A)的各处理(主处理A1,A2,A3)按随机区组设计安排于各小区,称主区;然后把各主区看作第二级因素的区组,每个主区划分成若干个小小区,也按随机区组设计安排第二级因素(B)的各处理(副处理B1,B2,B3,B4)。如下图∶B2B1B3B2B4B3Ⅰ--------------A1--------------------------A2--------------------------A3-------------B3B4B4B1B1B2B1B3B4B3B2B3Ⅱ--------------A2--------------------------A3--------------------------A1---
本文标题:《林业试验设计与数据分析》讲义
链接地址:https://www.777doc.com/doc-3477718 .html