您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 联立方程模型simultaneous-equationsmodel
1联立方程模型(simultaneous-equationsmodel)13.1联立方程模型的概念有时由于两个变量之间存在双向因果关系,用单一方程模型就不能完整的描述这两个变量之间的关系。有时为全面描述一项经济活动只用单一方程模型是不够的。这时应该用多个方程的组合来描述整个经济活动。从而引出联立方程模型的概念。联立方程模型:对于实际经济问题,描述变量间联立依存性的方程体系。联立方程模型的最大问题是E(X'u)0,当用OLS法估计模型中的方程参数时会产生联立方程偏倚,即所得参数的OLS估计量ˆ是有偏的、不一致的。给出三个定义:内生变量(endogenousvariable):由模型内变量所决定的变量。外生变量(exogenousvariable):由模型外变量所决定的变量。前定变量(predeterminedvariable):包括外生变量、外生滞后变量、内生滞后变量。例如:yt=0+1yt-1+0xt+1xt-1+utyt为内生变量;xt为外生变量;yt-1,xt,xt-1为前定变量。联立方程模型必须是完整的。所谓完整即“方程个数内生变量个数”。否则联立方程模型是无法估计的。13.2联立方程模型的分类(结构模型,简化型模型,递归模型)⑴结构模型(structuralmodel):把内生变量表述为其他内生变量、前定变量与随机误差项的方程体系。例:如下凯恩斯模型(为简化问题,对数据进行中心化处理,从而不出现截距项)ct=1yt+ut1消费函数,行为方程(behaviorequation)It=1yt+2yt-1+ut2投资函数,行为方程yt=ct+It+Gt国民收入等式,定义方程(definitionalequation)(1)其中,ct消费;yt国民收入;It投资;Gt政府支出。1,1,2称为结构参数。模型中内生变量有三个ct,yt,It。外生变量有一个Gt。内生滞后变量有一个yt-1。Gt,yt-1又称为前定变量。因模型中包括三个内生变量,含有三个方程,所以是一个完整的联立模型。内生变量与外生变量的划分不是绝对的,随着新的行为方程的加入,外生变量可以转化为内生变量;随着行为方程的减少,内生变量也可以转化为外生变量。⑵简化型模型(reduced-formequations):把内生变量只表示为前定变量与随机误差项函数的联立模型。仍以凯恩斯模型为例其简化型模型为,ct=11yt-1+12Gt+vt1It=21yt-1+22Gt+vt2yt=31yt-1+32Gt+vt3(2)或tttyIc=323122211211ttGy1+321vvv,其中ct,yt,It为内生变量,yt-1,Gt为前定变量,ij,(i=1,2,3,j=1,2),为简化型参数。2用如下矩阵符号表示上式Y=X+v(3)显然结构模型参数与简化型模型参数之间存在函数关系。把结构模型(1)中的内生变量全部移到方程等式的左边得ct-1yt=ut1It-1yt=2yt-1+ut2-ct-It+yt=Gt(4)用矩阵形式表达111100111tttyIc=100002ttGy1+021ttuu用如下矩阵符号表示上式Y=X+u(5)则Y=-1X+-1u(6)比较联立方程模型(3)和(6),结构参数和简化型参数有如下关系存在,=-1323122211211=111111111111111100002=11111)1(2112121其中,A-1=AA)(adj。A=111100111=111。adj(A)=11111111111=11111111111。的伴随矩阵是的代数余子式组成的矩阵的转置。v=-1u321vvv=111111111111111021ttuu⑶递归模型(recursivesystem):在结构方程体系中每个内生变量只是前定变量和比其序号低的内生变量的函数。3y1=11x1+…+1kxk+u1y2=21x1+…+2kxk+21y1+u2y3=31x1+…+3kxk+31y1+32y2+u3…..ym=m1x1+…+mkxk+m1y1+m2y1+…+mm-1ym-1+um(7)其中yi和xj分别表示内生变量和外生变量。其随机误差项应满足E(u1u2)=E(u1u3)=…=E(u2u3)=…=E(um-1um)=013.3联立方程模型的识别(identification)例:关于粮食的需求供给模型如下,Dt=0+1Pt+u1(需求函数)St=0+1Pt+u2(供给函数)St=Dt(平衡条件)(8)其中Dt需求量,St供给量,Pt价格,ui,(i=1,2)随机项。当供给与需求在市场上达到平衡时,Dt=St=Qt(产量),当用收集到的Qt,Pt样本值,而无其他信息估计回归参数时,则无法区别估计值是对0,1的估计还是对0,1的估计。从而引出联立方程模型的识别问题。也许有人认为若样本显示的是负斜率,则为需求函数;若是正斜率,则为供给函数。其实样本点所代表的只是不同需求与供给曲线的交点而已。显然为区别需求与供给曲线应进一步获得其他信息。例如收入和偏好的变化会影响需求曲线随时间变化产生位移,而对供给曲线不会产生影响。所以带有收入信息的这些观测点就会描绘出供给曲线的位置。也就是说供给曲线是可识别的。同理耕种面积、气候条件等因素只会影响供给曲线,不会对需求曲线产生影响。需求曲线就是可识别的。可见一个方程的可识别性取决于它是否排除了联立模型中其他方程所包含的一个或几个变量。称此为识别反论。QtQt需求曲线需求曲线,收入水平不同供给曲线供给曲线,耕地面积不同PtPt在模型(8)的需求函数和供给函数中分别加入收入变量It和天气变量Wt,Dt=0+1Pt+2It+u1(需求函数)St=0+1Pt+2Wt+u2(供给函数)St=Dt(平衡条件)于是行为方程成为可识别方程。也可以从代数意义上讨论识别问题。当结构模型已知时,能否从其对应的简化型模型参数求出结构模型参数就称为识别问题。从上面的分析已知,当一个结构模型确定下来之后,首先应考虑识别问题。4如果无法从简化型模型参数估计出所有的结构模型参数,称该结构模型是不可识别的。如果能够从简化型模型参数估计出所有的结构模型参数,就称该结构模型是可识别的。当结构模型参数与相对应的简化型方程参数有一一对应关系时,结构模型参数是恰好识别的。举例说明。上模型写为,Qt=0+1Pt+2It+u1Qt=0+1Pt+2Wt+u2有6个结构参数。相应简化型模型为Qt=10+11It+12Wt+vt1Pt=20+21It+22Wt+vt2如果对于简化型模型来说,有些结构模型参数取值不惟一,则该结构模型是过度识别的。由此可见识别问题是完整的联立方程模型所特有的问题。只有行为方程才存在识别问题,对于定义方程或恒等式不存在识别问题。识别问题不是参数估计问题,但是估计的前提。不可识别的模型则不可估计。识别依赖于对联立方程模型中每个方程的识别。若有一个方程是不可识别的,则整个联立方程模型是不可识别的。可识别性分为恰好识别和过度识别。不可识别模型的识别恰好识别可识别过度识别识别方法:①阶条件(ordercondition)不包含在待识别方程中的变量(被斥变量)个数(联立方程模型中的方程个数–1)阶条件是必要条件但不充分,即不满足阶条件是不可识别的,但满足了阶条件也不一定是可识别的。②秩条件(rankcondition)待识别方程的被斥变量系数矩阵的秩=(联立方程模型中方程个数–1)秩条件是充分必要条件。满足秩条件能保证联立方程模型内每个方程都有别于其他方程。识别的一般过程是(1)先考查阶条件,因为阶条件比秩条件判别起来简单。若不满足阶条件,识别到此为止。说明待识别方程不可识别。若满足阶条件,则进一步检查秩条件。(2)若不满足秩条件,说明待识别方程不可识别。若满足秩条件,说明待识别方程可识别,但不能判别可识别方程是属于恰好识别还是过度识别。对此还要返回来利用阶条件作判断。(3)若阶条件中的等式(被斥变量个数=方程个数–1)成立,则方程为恰好识别;若阶条件中的不等式(被斥变量个数方程个数–1)成立,则方程为过度识别。例:某结构模型为,y1=12y2+11x1+12x2+u1(恰好识别)y2=23y3+23x3+u2(过度识别)y3=31y1+32y2+33x3+u3(不可识别)(9)试考查第二个方程的可识性。由于结构模型有3个方程,3个内生变量,所以是完整的联立方程模型。对于第2个方程,被斥变量有3个y1,x1,x2,(方程个数–1)=2。所以满足阶条件。结构模型的系数矩阵是,533323123231211120010010001(10)从系数阵中划掉第2个方程的变量y2,y3,x3的系数所在的相应行和列,得第2个方程被斥变量的系数阵如下,33323123231211120010010001001311211(11)因为0131110,0131120,(12)被斥变量系数阵的秩=2,已知(方程个数)-1=2,所以第2个方程是可识别的。下面用阶条件判断第2个方程的恰好识别性或过度识别性。因为被斥变量个数是32,所以第2个方程是过度识别的。现考查第3个方程的可识性。对于第3个方程,被斥变量有2个x1,x2,(方程个数–1)=2。所以满足阶条件。从系数阵中划掉第3个方程的变量y1,y2,y3,x3的系数所在的相应行和列,得第3个方程的被斥变量系数阵如下33323123231211120010010001001211因为001211=0被斥变量系数阵的秩=1,已知(方程个数)-1=2,所以第3个方程是不可识别的。4.联立方程模型的估计方法y1=11x1+…+1kxk+u1y2=21x1+…+2kxk+21y1+u2y3=31x1+…+3kxk+31y1+32y2+u3…..递归模型的估计方法是OLS法。解释如下。首先看第一个方程。由于等号右边只含有外生变量和随机项,外生变量和随机项不相关,符合假定条件,所以可用OLS法估计参数。对于第二个方程,由于等号右边只含有一个内生变量y1,以及外生变量和随机项。根据假定u1和u2不相关,所以y1和u2不相关。对于y2来说,y1是一个前定变量。因此可以用OLS法估计第2个方程。以此类推可以用OLS法估计递归模型中的每一个方程。参数估计量具有无偏性和一致性。简化型模型可用OLS法估计参数。由于简化型模型一般是由结构模型对应而来,每个方程只含有一个内生变量且为被解释变量。它是前定变量和随机项的唯一函数。方程中解释变量都是前定变量,自然与随机项无关。所以用OLS法得到的参数估计量为一致估计量。对于结构模型有两种估计方法。一种为单一方程估计法,即有限信息估计法;另一种为6方程组估计法,系统估计法,即完全信息估计法。前者只考虑被估计方程的参数约束问题,而不过多地考虑方程组中其他方程所施加的参数约束,因此称为有限信息估计方法。后者在估计模型中的所有方程的同时,要考虑由于略去或缺少某些变量而对
本文标题:联立方程模型simultaneous-equationsmodel
链接地址:https://www.777doc.com/doc-3686661 .html