您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 人教版八年级下册--第二十章-数据的分析单元练习题(含答案)
第二十章数据的分析一、选择题1.从某市5000名初一学生中,随机抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是()A.平均数B.中位数C.众数D.方差2.某市一周的日最高气温如图所示,则该市这周的日最高气温的众数是()A.25B.26C.27D.283.要从百米赛跑成绩各不相同的9名同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想知道自己是否入选,只需要知道他们成绩的()A.平均数B.中位数C.众数D.方差4.甲、乙二人在相同条件下各射靶10次,每次射靶成绩如图所示,经计算得甲=乙=7,=1.2,=5.8,则下列结论中不正确的是()A.甲、乙的总环数相等B.甲的成绩稳定C.甲、乙的众数相同D.乙的发展潜力更大5.若一组数据3,x,4,2的众数和平均数相等,则这组数据的中位数为()A.3B.4C.2D.2.56.“倡导全民阅读”、“推动国民素质和社会文明程度显著提高”已成为“十三五”时期的重要工作.教育主管部门对某学校青年学校青年教师2016年度阅读情况进行了问卷调查,并将收集的数据统计如表,根据表中的信息判断,下列结论错误的是()A.该学校中参与调查的青年教师人数为40人B.该学校中青年教师2016年平均每人阅读8本书C.该学校中青年教师2016年度看书数量的中位数为4本D.该学校中青年教师2016年度看书数量的众数为4本7.校园文化艺术节期间,有19位同学参加了校十佳歌手比赛,所得的分数互不相同,取前10位同学获得十佳歌手称号,某同学知道自己的分数后,要判断自己是否获得十佳歌手称号,他只需知道这19位同学的()A.平均数B.中位数C.众数D.方差8.笑笑统计了3月份某天全国8个城市的空气质量指数,并绘制了折线统计图(如图),则这8个城市的空气质量指数的中位数是()A.59B.58C.50D.42二、填空题9.李明同学进行射击练习,两发子弹各打中5环,四发子弹各打中8环,三发子弹各打中9环.一发子弹打中10环,则他射击的平均成绩是________环.10.某校在“爱护地球绿化祖国”的创建活动中,组织学生开展植树造林活动.为了解全校学生的植树情况,学校随机抽查了100名学生的植树数量情况,将调查数据整理如下表:则这100名同学平均每人植树________棵.11.一次比赛中,5位裁判分别给某位选手打分的情况是:有2人给出9.1分,有2人给出9.3分,有1人给出9.7分,则这位选手的平均得分是________分.12.有5个数据的平均数为81,其中一个数据是85,那么另外四个数据的平均数是________.13.灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如下表:则这批灯泡的平均使用寿命是________.14.已知一组数据a、b、c、d、e的平均数是m,则a+1、b-3、c+5、d-7、e+9的平均数是________.15.已知一组数据的中位数为80,可知这组数据中大于或小于这个中位数的数据各占________,中位数有________个.16.为了调查某小区居民的用水情况,随机抽查了若干户家庭月用水量,结果如表:则关于这若干户家庭的月用水量,中位数是________吨,月平均用水________吨.三、解答题17.某公司欲招聘工人,对甲、乙应聘者进行三项测试:语言、创新、综合知识,并按测试得分1∶4∶3的比例确定测试总分,已知甲三项得分分别为86,70,70,乙三项得分分别为84,75,60,请计算甲、乙两人各自的平均成绩,看看谁将被录取?18.从某食品厂生产的袋装食品中抽出样品20袋,检测各袋的质量是否符合标准,超过或不足的部分用正、负数表示,记录如下表:这批样品的平均质量比标准质量多还是少?19.某工厂有15名工人,某月这15名工人加工的零件数统计如下表:求这15名工人该月加工的零件数的平均数.20.为提高居民的节水意识,向阳小区开展了“建设节水型社区,保障用水安全”为主题的节水宣传活动,小莹同学积极参与小区的宣传活动,并对小区300户家庭用水情况进行了抽样调查,他在300户家庭中,随机调查了50户家庭5月份的用水量情况,结果如下图所示.(1)试估计该小区5月份用水量不高于12吨的户数占小区总户数的百分比;(2)把图中每组用水量的值用该组的中间值(如0~6的中间值为3)来替代,估计该小区5月份的用水量.21.有关部门准备对某居民小区的自来水管网系统进行改造,为此,需了解该小区的自来水用水的情况.该部门通过随机抽样,调查了其中的20户家庭,这20户家庭的月用水量见下表:求这20户家庭的户均月用水量.答案解析1.【答案】C【解析】服装厂最感兴趣的是哪种尺码的服装售量较多,也就是需要参照指标众数.由于众数是数据中出现次数最多的数,故服装厂最感兴趣的指标是众数.故选C.2.【答案】A【解析】一组数据中出现次数最多的数据叫做众数,依此求解即可.由图形可知,25出现了3次,次数最多,所以众数是25.故选A.3.【答案】B【解析】总共有9名同学,只要确定每个人与第五名的成绩的多少即可判断,然后根据中位数定义即可判断.知道自己是否入选,只需知道第五名的成绩,即中位数.故选B.4.【答案】C【解析】分别求出甲、乙的总环数,以及众数就可以解决.A.甲的总环数=7×10=70;乙的总环数=7×10=70∴甲、乙的总环数相等B.∵<∴甲的成绩稳定.C.由图可知:甲中7出现次数最多,一共出现4次,∴甲的众数为7;乙中8出现次数最多,一共出现3次,∴乙的众数为8.甲、乙的众数不相同.D.因为乙超过8环的次数多,所以乙的发展潜力更大.故选C.5.【答案】A【解析】根据众数和平均数相等,得出x只能是3,再根据中位数的定义即可得出答案.当众数是3时,则x=3,这组数据的平均数是(3+3+4+2)÷4=3,这组数据为:2,3,3,4,∴中位数为(3+3)÷2=3.当众数是4时,则x=4,这组数据的平均数是(3+4+4+2)÷4=,这与众数和平均数相等不符,所以x不是4;当众数是2时,则x=2,这组数据的平均数是(3+2+4+2)÷4=,这与众数和平均数相等不符,所以x不是2;则x的值只能是3,中位数是3;故选A.6.【答案】B【解析】根据统计表可得出每个月课外阅读书籍的数量,即可求得平均数;出现次数最多的数据是众数;将这些数据按大小顺序排列,中间两个数的平均数为中位数;依此即可求解.A.8+6+5+10+4+7=40(人),故该学校中参与调查的青年教师人数为40人是正确的,不符合题意;B.平均数为:×(15×8+11×6+8×5+4×10+3×4+2×7)=7.3,原来的说法错误,符合题意;C.中间两个数都是4,所以中位数为4,故该学校中青年教师2016年度看书数量的中位数为4本,是正确的,不符合题意;D.4出现的次数最多,是10次,众数为4,故该学校中青年教师2016年度看书数量的众数为4本,是正确的,不符合题意.故选B.7.【答案】B【解析】根据题意,可知19名学生取前10名,只需要知道第10名同学的成绩即可,本题得以解决.由题意可得,19位同学取前10名,只要知道这19名同学的中位数,即排名第10的同学的成绩即可,故选B.8.【答案】B【解析】根据中位数的定义先把这些数从小到大排列,再找出最中间两个数的平均数,即可得出答案.把这些数从小到大排列为:28,36,42,58,58,70,75,83,最中间两个数的平均数是:(58+58)÷2=58,则这8个城市的空气质量指数的中位数是:58;故选B.9.【答案】7.9【解析】在求n个数的平均数时,如果x1出现f1次,x2出现f2次,x3出现f3次,…,xk出现fk次(这里f1+f2+f3+…+fk=n),那么这n个数的平均数=.所以,李明同学射击的平均成绩是=7.9环.10.【答案】5.8【解析】100名同学每人植树的平均数为:(4×30+5×22+6×25+8×15+10×8)÷100=580÷100=5.8(棵).11.【答案】9.3【解析】根据加权平均数的计算方法列式即可算出平均数.所以,平均得分是:(9.1×2+9.3×2+9.7×1)÷5=9.3.12.【答案】80【解析】先由5个数据的平均数为81,得出5个数据的和为81×5=405,再减去85,得出另外4个数据的和,再除以4即可.因为5个数据的平均数为81,所以5个数据的和是:81×5=405,因为其中一个数据为85,所以另外4个数据的和为:405-85=320,则另外4个数据的平均数是:320÷4=80.13.【答案】1680小时【解析】在统计调查中,有时候从总体中抽取个体的试验带有破坏性,这种情况下一般都是用样本的情况去估计总体的情况.根据题意得:(800×10+1200×19+1600×24+2000×35+2400×12)=1680(小时);则这100只灯泡的平均使用寿命约是1680小时.14.【答案】m+1【解析】求平均数只要求出数据之和再除以总个数即可.∵数据a、b、c、d、e的平均数是m,∴a+b+c+d+e=5m,∴(a+1+b-3+c+5+d-7+e+9)=[(a+b+c+d+e)+(1-3+5-7+9)]=×5m+×5=m+1.15.【答案】一半;一【解析】将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称处于中间位置的数为这组数据的中位数,如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数;中位数只有一个.16.【答案】5,4.6【解析】将所有数据按照从小到大的顺序排列为:3,3,4,4,4,5,5,5,5,5,8,则中位数为:5,平均数为:≈4.6.故答案为:5,4.6.17.【答案】甲的平均成绩为=72,乙的平均成绩为=70.5.所以甲被录用.【解析】根据各项所占比例不同,分别求出即可判断.18.【答案】解:这批样品的平均质量是:==0.7(克),所以,这批样品的平均质量比标准质量多0.7克.【解析】首先根据加权平均数的定义求出这批样品的平均质量,然后再进行比较即可.19.【答案】解:这15名工人该月加工的零件数的平均数是:==26(件).【解析】加工的零件数是数据,人数就是其对应的权,根据加权平均数的概念进行计算即可.20.【答案】解:(1)根据题意得:×100%=52%;答:该小区5月份用水量不高于12吨的户数占小区总户数的百分比是52%;(2)根据题意得:[300×(3×6+9×20+15×12+21×7+27×5)÷50]=3960(吨),答:该小区5月份的用水量是3960吨.【解析】(1)用用水量不高于12吨的户数除以抽查的总的户数即可求出该小区5月份用水量不高于12吨的户数占小区总户数的百分比;(2)用该组的中间值乘以户数,求出总的用水量,再除以抽查的户数求出每户的平均用水量,最后乘以该小区总的户数即可得出答案.21.【答案】解:这20户家庭的户均月用水量是:==15.5(m3).【解析】在求n个数的平均数时,如果x1出现f1次,x2出现f2次,x3出现f3次,…,xk出现fk次(这里f1+f2+f3+…+fk=n),那么这n个数的平均数=.
本文标题:人教版八年级下册--第二十章-数据的分析单元练习题(含答案)
链接地址:https://www.777doc.com/doc-3704679 .html