您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 酒店餐饮 > 2015四川高考理科数学考试说明
数学—2—Ⅰ.考试性质普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试.高等学校根据考生成绩,按已确定的招生计划,德、智、体全面衡量,择优录取.因此,高考应具有较高的信度、效度,必要的区分度和适当的难度.Ⅱ.命题原则及指导思想2015年普通高等学校招生全国统一考试(四川卷)数学学科的命题,将按照“有利于科学选拔人才,有利于促进学生健康发展,有利于维护社会公平”的原则,遵循“注重能力考查,体现课改理念,力求平稳推进”的指导思想,依据《2015年普通高等学校招生全国统一考试大纲(课程标准实验版)》和《2015年普通高等学校招生全国统一考试(四川卷)考试说明》规定的范围和要求命制试题.命题坚持以能力测试为主导,在考查考生基本知识、基本能力的同时,注重考查考生综合运用所学知识解决实际问题的能力和科学探究能力,突出考查学科意识、学科思维、科学素质和人文素养,力求做到科学、准确、公平、规范.Ⅲ.考试内容一、考核目标与考查要求数学科高考注重考查中学数学的基础知识、基本技能、基本思想方法,考查空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识、创新意识.具体考试内容根据教育部颁布的《普通高中数学课程标准(实验)》、教育部考试中心颁布的《普通高等学校招生全国统一考试大纲(理科·课程标准实验)》确定.数学学科的系统性和严密性决定了数学知识之间内在联系的深刻性,包括各部分知识的纵向联系和横向联系.数学学科的考试要从本质上体现这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.数学学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和现实性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力体现对考生综合数学素养和数学学习现状及潜能的考查.—3—2015四川高考理科数学考试说明1.数学知识知识是指《课程标准》所规定的必修课程、选修课程中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能.各部分知识的整体要求参照《课程标准》相应模块的有关说明.对知识的要求由低到高分为了解、理解、掌握三个层次(分别用A、B、C表示),且高一级的层次要求包含低一级的层次要求.(1)了解(A):要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别、认识它.“了解”层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.(2)理解(B):要求对所列知识内容有较深刻的理性的认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判断、讨论,具备利用所学知识解决简单问题的能力.“理解”层次所涉及的主要行为动词有:描述,说明,表达、表示,推测、想象,比较、判别、判断,初步应用等.(3)掌握(C):要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决.“掌握”层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.对数学基础知识的考查既要全面又要突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体.考查应注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度设计问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度.2.数学能力能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力及应用意识和创新意识.(1)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给的图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变—4—换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.(2)抽象概括能力:抽象是指舍弃事物非本质属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,概括必须在抽象的基础上得出某种观点或某个结论.抽象概括能力要求在对具体的、生动的实例进行抽象概括的过程中,能够发现研究对象的本质,从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或作出新的判断.(3)推理论证能力:根据已知的事实和已获得的正确数学命题,论证某一数学命题的真实性的初步的推理能力.推理既包括演绎推理,也包括合情推理;论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.(4)运算求解能力:会根据法则、公式进行正确的运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径,能根据要求对数据进行估计和近似计算.运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估算和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.(5)数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断、解决给定的实际问题.数据处理能力主要依据统计中的方法对数据进行整理、分析,并解决给定的实际问题.数据处理能力主要依据统计中的方法对数据进行整理、分析,并确定给定的实际问题.(6)应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.(7)创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,—5—是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.对数学能力的考查就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,体现对考生各种数学能力的要求.高考的数学命题,强调“以能力立意”,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.能力的考查以推理论证能力和抽象概括能力的考查为核心,全面涉及各种数学能力,并要切合考生实际,强调其科学性、严谨性、抽象性,强调探究性、综合性和应用性.对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化上;对运算求解能力的考查主要是对算法和推理的考查,考查以代数运算为主;对数据处理能力的考查主要是考查运用概率统计的基本方法和思想解决实际问题的能力.对应用意识的考查主要采用解决应用问题的形式.应用问题的命题要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要充分考虑中学数学教学的实际和考生的年龄特点,并结合考生具有的实践经验,使数学应用问题的难度符合考生的实际水平.对创新意识的考查是对高层次理性思维的考查.在考试中通过创设新颖的问题情境,构造有一定深度和广度的数学问题进行考查.试题设计要注重问题的多样化,体现思维的发散性,着眼数学主体内容、体现数学素质;试题主要以反映数、形运动变化及其相互联系的问题出现,主要为研究型、探索型、开放型等类型的问题.3.数学方法与数学思想数学方法主要包括归纳推理、类比推理、演绎推理、综合法、分析法、反证法等.(1)归纳推理:归纳推理就是从个别事实中推演出一般性的结论,依据特殊现象推断出一般现象,从已知的特殊的相同性质中推出一个明确表述的一般性命题等的推理.简言之,归纳推理是由特殊到一般的推理.(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理.简言之,类比推理是由特殊到特殊的推理.(3)演绎推理:演绎推理是由一般性的命题推出特殊性命题的一种推理模式,是一种必然性推理.演绎推理的主要形式,就是由大前提、小前提推出结论的三段论式推理.(4)综合法:综合法就是利用已知条件和数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立的证明方法.即PQ1→Q1Q2→Q2Q3→…→QnQ(其中P表示已知条件,Q表示结论).综合法是“执因导果”,从已知出发,顺着推理,逐渐地靠近结论.—6—(5)分析法:分析法就是从结论出发,逐步寻求使它成立的充分条件直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等)的证明方法.即QP1→P1P2→P2P3→…→得到一个明显成立的条件.分析法是“执果索因”,从要证的结论出发,倒着分析,逐渐地靠近已知.(6)反证法:反证法就是假设原命题不成立,经过正确的推理,得出矛盾,因此说明假设错误,从而证明了原命题成立的证明方法.它是从反面的角度思考问题的证明方法,即肯定题设而否定结论,从而导出矛盾推理而得,主要步骤是:否定结论→推导出矛盾→结论成立.数学思想主要包括函数与方程、数形结合、分类与整合、化归与转化、特殊与一般、有限与无限思想等.(1)函数与方程的思想:函数思想就是利用运动变化的观点分析和研究具体问题中的数量关系,通过函数的形式把这种数量关系表示出来并加以研究,从而使问题获解.方程思想是从问题的数量关系入手,运用数学语言将问题中的条件转化为方程问题,然后通过解方程(组)使问题获解.函数与方程的思想既是函数思想与方程思想的体现,也是两种思想综合运用的体现,是研究变量与函数、相等与不等过程中的基本数学思想.(2)数形结合的思想:数形结合的思想就是充分运用“数”的严谨和“形”的直观,将抽象的数学语言与直观的图形语言结合起来,使抽象思维和形象思维结合,通过图形的描述、代数的论证来研究和解决数学问题的一种数学思想方法.数形结合思想是数学的规律性与灵活性的有机结合,通过“以形助数,以数辅形”,变抽象思维为形象思维,使复杂问题简单化,抽象问题具体化,有助于把握数学问题的本质,有利于达到优化解题的目的.(3)分类与整合的思想:分类与整合就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答.分类与整合就是“化整为零,各个击破,再积零为整”的数学思想.(4)化归与转化的思想:化归与转化的思想是在研究和解决数学问题时采用某种方式,借助某些数学知识,将问题进行等价转化,使抽象问题具体化,复杂问题简单化、未知问题已知化等,进而达到解决问题的数学思想.(5)特殊与一般的思想:特殊与一般的思想就是通过对问题的特殊情形(如特殊函数、特殊数列、特殊点、特殊位置、特殊值、特殊方程等)的解决,寻求一般的、抽象的、运动变化的、不确定的等问题的解决思路和方法的数学思想.(6)有限与无限的思想:有限与无限的思想就是通过对有
本文标题:2015四川高考理科数学考试说明
链接地址:https://www.777doc.com/doc-3920144 .html