您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 导数的运算公式和法则
§3.3导数的基本公式和运算法则0)()()()()()(])()([)()()()(])()([)()(])()([2xvxvxvxuxvxuxvxuxvxuxvxuxvxuxvxuxvxu1.和、差、积、商的导数并且有处也可导在点则它们的和差积商处可导在点和设函数,,)()(xxxvxu)()(])()([xvxuxvxu),()(xvxuy设证明时,处取得改变量当自变量在xx)]()([)]()([xvxuxxvxxuy)]()([)]()([xvxxvxuxxuvuxyyx0lim)(lim0xvxux)()(xvxuxvxuxx00limlim)()()()(])()([)()(])()([xvxuxvxuxvxuxvxuxvxu)()(])([为常数axuaxau推论),()()(])()([11111为常数,nnnnnaaxuaxuaxuaxua)()(][vwuvwuuvw轮流求导,再相加wuvwvuvwu?)(1xv0)()()()()()(])()([2xvxvxvxuxvxuxvxu上式右端特点:,分式2,分母再相减分子分母依次轮流求导推论)()(2xvxv)(1xv分子分母的导数求函数3lncos524314xxyx例)3(ln)cos5()24()3(4xxyx解31242ln25sinxxx的导数求函数2sinsin2xxy例2sinsinxxy解xxxxcossin21的导数求函数xy2sin3例)'cossin2('xxy解])'(cossincos)'[(sin2xxxxxxx2cos2)sin(cos222的导数求函数xexyxln43例)'ln('3xexyx解xexxexxexxxx21lnln3332)1lnln3(212xxxexx?2cosx的导数求xytan5例)'cossin()'(tan'xxxy解正切函数的导数公式xx2sec)'(tanxxxxxxxxcotcsc)'(csctansec)'(seccsc)'(cot2余割函数的导数公式正割函数的导数公式余切函数的导数公式xxxxx2cos)'(cossincos)'(sinxxxxx22222seccos1cossincos公式导数xxaxxa1)'(lnln1)'(log)4(xxcos)'(sin)5(xxxxeeaaa)'(ln)'()3(0)1(Cxxsin)'(cos)6(xx2sec)')(tan7(xx2csc)'(cot)8(xxxtansec)'(sec)9(xxxcotcsc)')(csc10(1)'()2(xxxxxyxxyxxycxbayxxxyncoslnsin1ln333求下列函数的导数练习:答案2333)1(1lnln2xxxxx21)(nncxbacnxxxxx)22132(xxxxcos2sinxxxxxxxxsinlncoscosln3322作业:p.136−13712、14、162.反函数求导法则xfyyxx1lim0yxy1lim0x1xyx0lim,,,,可导连续单调设xfy可导反函数记为),(1yfx,,连续单调xfy0,00,0yxyx时且时当])([11yf的导数原函数)(xfy的导数的倒数反函数)(1yfxyxy0lim1的导数求xyarcsin6例解yxsin反函数为)(arcsinxy反正弦函数的导数公式为1,11)(arcsin2xxx反余弦函数的导数公式为1,11)(arccos2xxx)(sin1yycos1y2sin11211x1||x22y的导数求xyarctan7例解yxtan反函数为)(arctanxy反正切函数的导数公式),(,11)(arctan2xxx反余切函数的导数公式),(,11)cotarc(2xxx)(tan1yy2sec1y2tan11211x3.基本导数公式)1,0(aaac为常数,且、、其中xxaxxa1)'(lnln1)'(log)4(xxcos)'(sin)5(1)'()2(xxxxxxeeaaa)'(ln)'()3(0)1(Cxxsin)'(cos)6(xx2sec)')(tan7(xx2csc)'(cot)8(xxxtansec)'(sec)9(xxxcotcsc)')(csc10(211)'(arcsin)11(xx211)')(arccos12(xx211)'(arctan)13(xx211)'cotarc)(14(xx习练xeyeeyxxyxxxln)3(11)2(tan1.1)(求导xxxxy2sec2tan)1(:答案2)1()1()1()2(xxxxxeeeeey2)1(2xxee)ln21ln21()3(xeyxx2121)()(])()([xvxuxvxu导数的四则运算法则)()()()(])()([xvxuxvxuxvxu0)()()()()()(])()([2xvxvxvxuxvxuxvxu公式导数xxaxxa1)'(lnln1)'(log)4(xxcos)'(sin)5(xxxxeeaaa)'(ln)'()3(0)1(Cxxsin)'(cos)6(xx2sec)')(tan7(xx2csc)'(cot)8(xxxtansec)'(sec)9(xxxcotcsc)')(csc10(1)'()2(xx211)'(arcsin)11(xx211)')(arccos12(xx211)'(arctan)13(xx211)'cotarc)(14(xx4.复合函数求导法则xx2cos)2(sin?1问题2问题2,2,1dtdytytyt的导数关于其函数为自变量以)6,62,32dxdyxyxtyxt的导数关于则若)求导“谁对谁”求导数一定要注意说明的导数求函数视为一个整体表示将上式等号右端中的ufuyufu,),(),(),(xuufy设处可导,则在相应的处可导,在某个若uufxx)()()(链式法则)()(xuufdxdyxuxuyy或))](([复合函数即有xfy1注2注例如限层复合函数的求导本链式法则可推广至有,则设,)]([321xfffy,32211xfufufdxdyxfuufu32221,中间变量求下列函数的导数9例xy2sin)1(解dxdududydxdyxdxdy2cos2完了吗?则令,2,sinxuuy逐层分解)01链式求导)02回代)032cosu3)12()2(xy,12,3+令xuuy解dxdududydxdy则2)126x(22)3(xay,,22xauuy令解dxdududydxdy则22xax232u)2(21xu使得每的层次关键在于准确分清复合对复合函数求导,,.,.量可不必明确写出中间变熟练后注意不要遗漏中间层求下列函数的导数10例2tan)1(xy22secxy解u)(2xxy2tan)2(xytan2解u22sec2xxxx2sectan2xysinln)3(xysin1解uxxsincosxcot)(tanx)(sinxu初等函数函数或只含四则运算的一层函数均为基本初等,,,的链式法则逐层求导”“由外至内按照求导时特别)]ln[ln(ln)4(xy)ln(ln1xy解u])[ln(lnxxxln1)ln(ln1u)(lnxxxx1ln1)ln(ln1)ln(lnln1xxx)2(21ln)5(32xxxy)2ln(31)1ln(212xxy解])1[ln(2xu)1(2x122xx])2[ln(xu)2(x21x)2(3112xxxy再按照相应法则求解复合)层次(包括四则首先分清其运算的求导对于较复杂形式的函数,,,注112x21x习练求下列函数的导数)(其中0,0arccos)53tan)41arctan)3arcsin)2)12221sinaxxaaxyxeyxyxyeyxx:答案xexxxexxexeyxxxx1cos1)1(1cos)1(1cos)1(sin)11sin221sin1sin1sinxxxxxxy1212111)()(11)22)(其中0,0arccos)53tan)41arctan)3arcsin)2)12221sinaxxaaxyxeyxyxyeyxx2222211)1(1)1()1(11)3xxxxxxyxexexexeyxxxx3sec33tan2)3(tan3tan)()422222222222222))(1(22)(arccos)()5axxaxxaxaaxxxaaxy:答案)'(logxa求xxxaaloglog0时,解xalogaxln1)(xaxln1xxxaaloglog0时,axxaln1logaxxaln1logdxdududydxdy逐层求导由外至内,.,,,log.2ygfxgyxf求均可导其中设)(ln)(lnxfxgy解)(ln])()[ln(ln)(ln])([ln2xfxfxgxfxgy)(ln)()(1)(ln)(ln)()(12xfxfxfxgxfxgxg)(ln)()()(ln)()()(ln)()(2xfxgxfxgxgxfxfxfxg抽象函数求导.)(0),(称为隐函数所确定的函数由方程xfyyxF5、隐函数的导数,sin,3xxyeyx如0132yx如显函数二元方程定义013-2)(yxyx,F如)12(31xy?显化如何求导?隐函数不易显化或不能)(xfy0),(yxF隐函数的显化0)(yxeexyyx,F如不易显化)(xyxy的函数看作将:隐函数求导法则的函数!为注意xydxdy,yx-求已知01321例解,求导方程两边对x032dxdy32dxdy.y解出,求导同时对x两边在0),(yxF0,02xyxdxdydxdyyeexy导数的所确定的隐函数求由方程例解,求导方程两边对xyxeedxdyxy,yxexyedxdy,0,0yx由原方程知000yxyxxexyedxdy10dxdy.)23,23(,3333的切线方程上点求过的方程为设曲线CxyyxC例,求导方程两边对xyxyyyx333322)23,23(22)23,23(xyxyy1)23(23xy.
本文标题:导数的运算公式和法则
链接地址:https://www.777doc.com/doc-4941918 .html