您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 反比例函数的图像和性质3——八年级数学课件
理一理函数正比例函数反比例函数表达式图象及象限性质在每一个象限内:当k0时,y随x的增大而减小;当k0时,y随x的增大而增大.y=kx(k≠0)(特殊的一次函数)当k0时,y随x的增大而增大;当k0时,y随x的增大而减小.k0xyoxyok0k0yx0y0k0x0)k(kxy或kx或yxky1则垂足为轴的垂线作过有上任意一点是双曲线设,,)1(:,)0(),(AxPkxkynmP||21||||2121knmAPOASOAPP(m,n)AoyxP(m,n)Aoyx面积性质(一)忆一忆).(||||||,,,,)2(如图所示则垂足分别为轴的垂线轴分别作过矩形knmAPOASBAyxPOAPBP(m,n)AoyxBP(m,n)AoyxB面积性质(二)忆一忆填一填1.函数是函数,其图象为,其中k=,自变量x的取值范围为.2.函数的图象位于第象限,在每一象限内,y的值随x的增大而,当x>0时,y0,这部分图象位于第象限.x2yx6y反比例双曲线2x≠0一、三减小>一3.函数的图象位于第象限,在每一象限内,y的值随x的增大而,当x>0时,y0,这部分图象位于第象限.x6y二、四增大<四练习二:图像与性质•1、如图是三个反比例函数在x轴上方的图像,由此观察得到()•Ak1k2k3Bk3k2k1•Ck2k1k3Dk3k1k2xky,xky,xky332211x3y,x2y,x1y321.____)0()1()1999.(4图象的是在同一坐标系中的大致和如图能表示年哈尔滨kxkyxkyOxyACOxyDxyoOxyBDo(1)(2)(3)(4)V(km/h)Y/LoV(km/h)Y/LoV(km/h)Y/LoV(km/h)Y/L•(05江西省中考题)已知甲,乙两地相距skm,汽车从甲地匀速行驶到乙地.如果汽车每小时耗油量为aL,那么从甲地到乙地的总耗油量y(L)与汽车的行驶速度v(km/h)的函数图象大致是().实际应用反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和y=-x。对称中心是:原点xy012y=—kxy=xy=-x•例:表示下面四个关系式的图像有图像与性质x1|y||x|1y|x|1y|x|1|y|例:如图,反比例函数的图象与一次函数的图象交于M、N两点。(1)求反比例函数和一次函数的解析式。(2)根据图象写出使反比例函数的值大于一次函数的值的x的取值范围。kyxyaxbxyoMN(2,m)(-1,-4).2,,8,)2003.(3的纵坐标都是的横坐标和点且点两点的图象交于的图象与反比例函数已知一次函数如图年成都BABAxybkxyAyOBx求(1)一次函数的解析式(2)根据图像写出使一次函数的值小于反比例函数的值的x的取值范围。例:已知,关于x的一次函数和反比例函数的图象都经过点(1,-2),求这两个函数的解析式。3ymxn25mnyx;)2(;)1(,m);2(xky1kxy:一个交点的坐标求这两个函数图象的另求一次函数的解析式的图象都经过点函数和反比例已知一次函数例例:已知点A(0,2)和点B(0,-2),点P在函数的图象上,如果△PAB的面积是6,求P的坐标。1yx例:王先生驾车从A地前往300km外的B地,他的车速平均每小时v(km),A地到B地的时间为t(h)。(1)以时间为横轴,速度为纵轴,画出反映v、t之间的变化关系的图象。(2)观察图象,回答:①当v100时,t的取值范围是什么?②如果平均速度控制在第每小时60km至每小时150km之间,王先生到达B地至少花费多少小时?例、如图,已知反比例函数的图象与一次函数y=kx+4的图象相交于P、Q两点,且P点的纵坐标是6。(1)求这个一次函数的解析式(2)求三角形POQ的面积12yxxyoPQDC①如果y与z成正比例,z与x成正比例,则y与x的函数关系是:③如果y与z成反比例,z与x成正比例,则y与x的函数关系是:练习4②如果y与z成正比例,z与x成反比例,则y与x的函数关系是:④如果y与z成反比例,z与x成反比例,则y与x的函数关系是:Y与x成正比例Y与x成反比例Y与x成反比例Y与x成正比例
本文标题:反比例函数的图像和性质3——八年级数学课件
链接地址:https://www.777doc.com/doc-4981349 .html