您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2018年中考数学精品专题16函数的应用
2018年中考数学备考精品考点十六:函数的应用聚焦考点☆温习理解1.函数的应用主要涉及到经济决策、市场经济等方面的应用.2.利用函数知识解应用题的一般步骤:(1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案.3.利用函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.名师点睛☆典例分类考点典例一、一次函数相关应用题【例1】(2017陕西省西安铁一中模拟)“2016年冬季越野赛”在滨河学校操场举行,某运动员从起点学校东门出发,途径湿地公园,沿比赛路线跑回终点学校东门.沿该运动员离开起点的路程s(千米)与跑步时间t(时间)之间的函数关系如图所示,其中从起点到湿地公园的平均速度是0.3千米/分钟,用时35分钟,根据图像提供的信息,解答下列问题:学+科网(1)求图中a的值;(2)组委会在距离起点2.12千米处设立一个拍摄点C,该运动员从第一次过点C到第二次过点C所用的时间为68分钟.①求AB所在直线的函数解析式;②该运动员跑完全程用时多少分钟?【答案】(1)10.5;(2)①直线AB解析式为0.2117.85st;②该运动员跑完赛程用时85分钟.(2)①∵线段OA经过点0,0O,35,10.5A,∴直线OA解析式为0.3035stt,∴当2.1s时,0.32.1t,解得7t,∵该运动员从第一次经过C点到第二次经过C点所用的时间为68分钟,∴该运动员从起点到第二次经过C点所用的时间是,学科!网76875分钟,∴直线AB经过35,10.5,75,2.1,设直线AB解析式sktb,[来源:学&科&网Z&X&X&K]∴3510.5{752.1kbkb解得0.21{17.85kb,∴直线AB解析式为0.2117.85st.②该运动员跑完赛程用的时间即为直线AB与x轴交点的横坐标,∴当0s时,0.2117.850t,解得85t,∴该运动员跑完赛程用时85分钟.考点:一次函数的应用.【点睛】本题考查一次函数的应用,解题的关键是搞清楚路程、速度、时间之间的关系,学会利用一次函数的性质解决实际问题.【举一反三】(2017湖北咸宁第22题)某公司开发出一款新的节能产品,该产品的成本价位6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件.工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.⑴第24天的日销售量是件,日销售利润是元;⑵求y与x之间的函数关系式,并写出x的取值范围;⑶日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?考点典例二、反比例函数相关应用题【例2】(2017河北省石家庄市裕华区模拟)小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y(℃)与开机时间x(分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y(℃)与开机时间x(分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:(1)当0≤x≤8时,求水温y(℃)与开机时间x(分)的函数关系式;(2)求图中t的值;(3)若小明在通电开机后即外出散步,请你预测小明散步45分钟回到家时,饮水机内的温度约为多少℃?【答案】(1)y=10x+20;(2)t=40;(3)小明散步45分钟回到家时,饮水机内的温度约为70℃.(2)在水温下降过程中,设水温y(℃)与开机时间x(分)的函数关系式为:y=,依据题意,得:100=,即m=800,故y=,当y=20时,20=,解得:t=40;(3)∵45﹣40=5≤8,∴当x=5时,y=10×5+20=70,答:小明散步45分钟回到家时,饮水机内的温度约为70℃.【点睛】本题主要考查了一次函数及反比例函数的应用题,根据题意得出正确的函数解析式是解题关键,同学们在解答时要读懂题意,才不易出错.【举一反三】考点典例三、二次函数相关应用题【例3】(2017苏科版南京栖霞区期末)某商场试销一种成本价为每件60元的服装,规定试销期间销售单价不低于成本单价,获利不得高于40%.经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=80时,y=40;x=70时,y=50.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?【答案】(1)一次函数的解析式为y=﹣x+120(60≤x≤84);(2)销售价定为每件84元时,可获得最大利润,最大利润是864元.(2)销售额:xy=x(﹣x+120)元;成本:60y=60(﹣x+120),∴W=xy﹣60y,=x(﹣x+120)﹣60(﹣x+120),=(x﹣60)(﹣x+120),=﹣x2+180x﹣7200,=﹣(x﹣90)2+900,∴W=﹣(x﹣90)2+900,(60≤x≤84),当x=84时,W取得最大值,最大值是:﹣(84﹣90)2+900=864(元),即销售价定为每件84元时,可获得最大利润,最大利润是864元.【点睛】本题主要考查了待定系数法求一次函数解析式,二次函数在实际问题中的应用,弄清题意,理清关系是解题的关键.【举一反三】(2017安徽省淮南市潘集区联考)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化,求S与x之间的函数关系式,并写出自变量x的取值范围.课时作业☆能力提升1(2017黑龙江省牡丹江一模)某天早晨,张强从家跑步去体育锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,张强跑到体育场后发现要下雨,立即按原路返回,遇到妈妈后两人一起回到家(张强和妈妈始终在同一条笔直的公路上行走).如图是两人离家的距离y(米)与张强出发的时间x(分)之间的函数图象,则下列说法:①张强返回时的速度是l50米/分;②妈妈原来的速度为50米/分;③妈妈比按原速返回提前l0分钟到家;④当时间为25分或33分或35分时,张强与妈妈相距l00米正确个数为()A.1个B.2个C.3个D.4个2.(2017甘肃省兰州二十七中中考数学模拟)心理学家发现:学生对概念的接受能力y与提出概念的时间x(min)之间是二次函数关系,当提出概念13min时,学生对概念的接受力最大,为59.9;当提出概念30min时,学生对概念的接受能力就剩下31,则y与x满足的二次函数关系式为()A.y=﹣(x﹣13)2+59.9B.y=﹣0.1x2+2.6x+31C.y=0.1x2﹣2.6x+76.8D.y=﹣0.1x2+2.6x+433.(2017天津南开区三模)甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=960;④a=34.以上结论正确的有()A.①②B.①②③C.①③④D.①②④4.(2017山东省青州市吴井期末)如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费________元.5.(2017江西省南昌市南昌二中,27中联考)根据牛顿发现的有关自由落体运动的规律,我们知道竖直向上抛出的物体,上升的高度h(m)与时间t(s)的关系式为h=v0t-12gt2,一般情况下,g=9.8m/s2.如果v0=9.8m/s,那么经过__s竖直向上抛出的小球的上升高度为4.9m.6.(2017山东德州第22题)随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了一个圆形喷水池,在水池中心竖直安装了一根高米的喷水管,它喷出的抛物线形水柱在与池中心的水平距离为米处达到最高,水柱落地处离池中心米.(1)请你建立适当的直角坐标系,并求出水柱抛物线的函数解析式;(2)求出水柱的最大高度是多少?7.(2017上海第22题)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.8.(2017浙江嘉兴第24题)如图,某日的钱塘江观潮信息如表:按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s(千米)与时间t(分钟)的函数关系用图3表示,其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点(0,12)A,点B坐标为(,0)m,曲线BC可用二次函数21125stbtc(b,c是常数)刻画.(1)求m的值,并求出潮头从甲地到乙地的速度;(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后,问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度02(30)125vvt,0v是加速前的速度).9.(2017广东省广州市增城区一模)如图,制作某金属工具先将材料煅烧6分钟温度升到800℃,再停止煅烧进行锻造,8分钟温度降为600℃;煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时温度y(℃)与时间x(min)成反比例函数关系;该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y与x的函数关系式;(2)根据工艺要求,当材料温度低于480℃时,须停止操作,那么锻造的操作时间有多长?10.(本题10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如下表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲6[来源:学|科|网Z|X|X|K]a20200乙201040+0.05x280其中a为常数,且3≤a≤5.(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;学科+网(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.11.为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:港口[来源:学科网]运费(元/台)甲库乙库A港1420B港108(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.12.(2017新疆乌鲁木齐第22题)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地相距多远?(2)求快车和慢车的速度分别是多少?(3)求出两车相遇后y与x之间的函数关系式;(4)何时两车相距300千米.13.(2017浙
本文标题:2018年中考数学精品专题16函数的应用
链接地址:https://www.777doc.com/doc-5187772 .html