您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 电子设计/PCB > 四路温度采集系统系统
第1页共13页四路温度采集系统的设计【内容摘要】本文主要研究的是基于AT89S51单片机作为系统的温度显示以及设定双路温度报警系统的设计。此系统硬件电路主要包括5部分:AT89S51单片机最小系统电路部分和复位电路部分,LCD1602液晶显示电路部分,4个DS18B20作为温度检测部分,以及电源电路部分。本系统采用C语言进行编写程序,为了便于阅读和修改,软件采用模块化结构设计,使程序间的逻辑层次更加简明。【关键词】四路温度采集系统系统;DS18B20;LCD1602液晶显示;AT89S51单片机1引言四路温度采集系统系统不仅是工业上的宠儿,也是是单片机实验中一个很常用的题目。因为它的有很好的开放性和可发挥性,因此对作者的要求比较高,不仅考察了对单片机的掌握能力更加强调了对单片机扩展的应用。而且在操作的设计上要力求简洁,功能上尽量齐全,显示界面也要出色。所以,双路温度报警系统无论作为比赛题目还是练习题目都是很有价值。本文介绍一种基于AT89C2051单片机的一种温度测量,该电路DS18B20作为温度监测元件,测量范围-55℃-~+125℃,使用LCD1602液晶显示模块显示,能通过键盘设置温度报警上下限.正文着重给出了软硬件系统的各部分电路,介绍了集成温度传感器DS18B20的原理,AT89C2051单片机功能和应用.该电路设计新颖,功能强大,结构简单。2双路温度报警系统系统简介及其作用综述首先,由DS18B20温度传感器芯片测量当前温度,并将结果送入单片机。然后,通过AT89C51单片机芯片对送入的测量温度读数进行计算和转换,并将此结果送入液晶显示模块。最后,LCD1602模块将送来的四路温度值值显示于显示屏上。第2页共13页本系统测温范围为-55℃-~+125℃,精度达0.1℃。3系统硬件设计系统硬件主要包括:本系统硬件电路比较简单。只要由AT89S51单片机电路,LCD12864液晶显示电路,DS18B20温度芯片,复位电路以及按键输入电路组成。系统总统设计图3-1所示。图3-1系统总体设计图3.1AT89S51单片机电路LCD1602显示电路AT89S51单片机电路复位电路18B20芯片218B20芯片118B20芯片3第3页共13页图3-2单片机最小系统模块图3.1.1AT89S51单片机要实现工作的最小系统AT89S51单片机电路是该电路的核心部分,所有的数据运算,处理,执行都是通过它来实现,电路图如图3-2所示。单片机要实现工作的最小系统为:时钟电路,复位电路,电源。时钟电路位单片机提供周期性脉冲,是单片机的心脏,本设计采用的是12M的晶振。复位电路是当电路发生复位的时候,不管程序运行到什么地方,都会跳到程序的人口地址,开始重新运行,复位方式为高电平复位。电源电路位系统提供稳定的5V电压。3.2LCD1602液晶显示电路第4页共13页图3-3LCD1602液晶显示模块图●单5V电源电压,低功耗、长寿命、高可靠性●内置192种字符(160个5×7点阵字符和32个5×10点阵字符)●具有64个字节的自定义字符RAM,可定义8个5×8点阵字符或四个5×11点阵字符●显示方式:STN、半透、正显●驱动方式:1/16DUTY,1/5BIAS●视角方向:6点●背光方式:底部LED●通讯方式:4位或8位并口可选●标准的接口特性,适配MC51和M6800系列MPU的操作时序1602LCD模块接口定义表4-11602LCD接口定义表管脚定义符号功能1Vss电源地(GND)2Vdd电源电压(+5V)3V0LCD驱动电压(可调)4RS寄存器选择输入端,输入MPU选择模块内部寄存器类型号;RS=0,当MPU行进写模块操作,指向指令寄存器;当MPU进行读模块操作,指向地址计数器;RS=1,无论MPU读操作还是写操作,均指向数据寄存器5R/W读写控制输入端,输入MPU选择读/写模块操作操作信号:R/W=0读操作;R/W=1写操作6E使能信号输入端,输入MPU读/写模块操作使能信号:读操作时,高电平有效;写操作时,下降沿有效7DB0数据输入/输出口,MPU与模块之间的数据传送通道8DB1数据输入/输出口,MPU与模块之间的数据传送通道9DB2数据输入/输出口,MPU与模块之间的数据传送通道10DB3数据输入/输出口,MPU与模块之间的数据传送通道11DB4数据输入/输出口,MPU与模块之间的数据传送通道12DB5数据输入/输出口,MPU与模块之间的数据传送通道13DB6数据输入/输出口,MPU与模块之间的数据传送通道14DB7数据输入/输出口,MPU与模块之间的数据传送通道第5页共13页15A背光的正端+5V16K背光的负端0V初始化方式:发命令0x30-延时-发命令0x30-延时-发命令0x30-延时-发命令0x0c-延时发命令0x06-延时发命令0x02-延时发命令0x31-延时。3.2温度芯片DS18B20DALLAS最新单线数字温度传感器DS18B20简介新的“一线器件”体积更小、适用电压更宽、更经济Dallas半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。DS18B20、DS1822“一线总线”数字化温度传感器同DS1820一样,DS18B20也支持“一线总线”接口,测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。DS1822的精度较差为±2°C。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。DS18B20、DS1822的特性DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。可选更小的封装方式,更宽的电压适用范围。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20的性能是新一代产品中最好的!性能价格比也非常出色!DS1822与DS18B20软件兼容,是DS18B20的简化版本。省略了存储用户定义报警温度、分辨率参数的EEPROM,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济第6页共13页型产品。继“一线总线”的早期产品后,DS1820开辟了温度传感器技术的新概念。DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。DS18B20的内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如下:DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。第7页共13页光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。例如+125℃的数字输出为07D0H,+25.0625℃的数字输出为0191H,-25.0625℃的数字输出为FF6FH,-55℃的数字输出为FC90H。第8页共13页DS18B20温度传感器的存储器DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的E2RAM,后者存放高温度和低温度触发器TH、TL和结构寄存器。暂存存储器包含了8个连续字节,前两个字节是测得的温度信息,第一个字节的内容是温度的低八位,第二个字节是温度的高八位。第三个和第四个字节是TH、TL的易失性拷贝,第五个字节是结构寄存器的易失性拷贝,这三个字节的内容在每一次上电复位时被刷新。第六、七、八个字节用于内部计算。第九个字节是冗余检验字节。第9页共13页该字节各位的意义如下:TMR1R011111低五位一直都是1,TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式。在DS18B20出厂时该位被设置为0,用户不要去改动。R1和R0用来设置分辨率,如下表所示:(DS18B20出厂时被设置为12位)分辨率设置表:R1R0分辨率温度最大转换时间009位93.75ms0110位187.5ms第10页共13页1011位375ms1112位750ms根据DS18B20的通讯协议,主机控制DS18B20完成温度转换必须经过三个步骤:每一次读写之前都要对DS18B20进行复位,复位成功后发送一条ROM指令,最后发送RAM指令,这样才能对DS18B20进行预定的操作。复位要求主CPU将数据线下拉500微秒,然后释放,DS18B20收到信号后等待16~60微秒左右,后发出60~240微秒的存在低脉冲,主CPU收到此信号表示复位成功。DS1820使用中注意事项第11页共13页DS1820虽然具有测温系统简单、测温精度高、连接方便、占用口线少等优点,但在实际应用中也应注意以下几方面的问题:(1)较小的硬件开销需要相对复杂的软件进行补偿,由于DS1820与微处理器间采用串行数据传送,因此,在对DS1820进行读写编程时,必须严格的保证读写时序,否则将无法读取测温结果。在使用PL/M、C等高级语言进行系统程序设计时,对DS1820操作部分最好采用汇编语言实现。(2)在DS1820的有关资料中均未提及单总线上所挂DS1820数量问题,容易使人误认为可以挂任意多个DS1820,在实际应用中并非如此。当单总线上所挂DS1820超过8个时,就需要解决微处理器的总线驱动问题,这一点在进行多点测温系统设计时要加以注意。(3)连接DS1820的总线电缆是有长度限制的。试验中,当采用普通信号电缆传输长度超过50m时,读取的测温数据将发生错误。当将总线电缆改为双绞线带屏蔽电缆时,正常通讯距离可达150m,当采用每米绞合次数更多的双绞线带屏蔽电缆时,正常通讯距离进一步加长。这种情况主要是由总线分布电容使信号波形产生畸变造成的。因此,在用DS1820进行长距离测温系统设计时要充分考虑总线分布电容和阻抗匹配问题。(4)在DS1820测温程序设计中,向DS1820发出温度转换命令后,程序总要等待DS1820的返回信号,一旦某个DS1820接触不好或断线,第12页共13页当程序读该DS1820时,将没有返回信号,程序进入死循环。这一点在进行DS1820硬件连接和软件设计时也要给予一定的重视。测温电缆线建议采用屏蔽4芯双绞线,其中一对线接地线与信号线,另一组接VCC和地线,屏蔽层在源端单点接地。4系统软件设计系统软件编程采用C语言进行编程。为了方便系统管理和功能扩展,本系统软件采用模块化结构设计,使程序间的逻辑层次更加简明。因为本设计硬件比较简单,大部分功能的实现都是有软件来完成。整个程序大部分的编译和调试都在KeiluVision3的集成开发环境下来完成。4.5软件设计方案图4-118B20芯片软件流程图第13页共13页
本文标题:四路温度采集系统系统
链接地址:https://www.777doc.com/doc-5873691 .html