您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 七年级直线平行线易错题、经典题分析解答
七年级直线平行线易错题、经典题分析解答1.有下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④两个锐角的和是锐角;⑤同角或等角的补角相等.正确命题的个数是()A.2个B.3个C.4个D.5个分析解答:选A.此题涉及知识较多,请同学们认真阅读,最好借助图形来解答.考点:同位角、内错角、同旁内角;线段的性质:两点之间线段最短.分析:此题考查的知识点多,用平行线的性质,对顶角性质,补角的定义等来一一验证,从而求解.解:①忽略了两条直线必须是平行线;③不应忽略相等的两个角的两条边必须互为反向延长线,才是对顶角;④举一反例即可证明是错的:80°+60°=170°,170°显然不是锐角,故①③④是错的.②是公理故正确;⑤根据补角定义如果两个角的和是一个平角,那么这两个角叫互为补角,其中一个角叫做另一个角的补角,同角的补角相等.比如:∠A+∠B=180°,∠A+∠C=180°,则∠C=∠B.等角的补角相等.比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D,则∠C=∠B.∴②⑤是正确的.2.下列所示的四个图形中,∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④分析解答:选C。判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.考点:同位角、内错角、同旁内角.分析:此题在于考查同位角的概念,在截线的同侧,并且在被截线的同一方的两个角是同位角,所以①②④符合要求.解:图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故.3.如图,与∠α构成同旁内角的角有()A.1个B.2个C.5个D.4个分析解答:选C。位置关系判断的一对角互为同旁内角。考点:同位角、内错角、同旁内角.分析:根据同旁内角的定义,两个角都在截线的一侧,且在两条直线之间,具有这样位置关系的一对角互为同旁内角.解:根据同旁内角的定义可知:与∠α构成同旁内角的角有5个.故选C.判断是否是同旁内角,必须符合三线八角中,两个角都在截线的一侧,且在两条直线之间,具有这样位置关系的一对角互为同旁内角.4.如图所示,同位角共有()A.6对B.8对C.10对D.12对分析解答:选C.本题主要考查同位角的概念.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.考点:同位角、内错角、同旁内角.分析:在基本图形“三线八角”中有四对同位角,再看增加射线GM、HN后,增加了多少对同位角,求总和.解:如图,由AB、CD、EF组成的“三线八角”中同位角有四对,增加射线GM、HN后,射线GM与直线CD,射线HN与直线AB,射线GM与射线HN各增加2对,共增加6对,总共10对.5.下面3个命题:①两条相交直线被第三条直线所截,同位角不相等;②直角都相等;③同角的余角相等,其中真命题有()A.0个B.1个C.2个D.3个分析解答:选D.本题考查的是对命题、真命题、假命题概念的掌握情况,同时对相交线、平行线、角考点:同位角、内错角、同旁内角;余角和补角.分析:①此命题与“两直线平行同位角相等”是同一命题,故正确;②③显然正确.解:①两直线平行,同位角相等;则两直线不平行,同位角不相等,正确;②直角都是90°,当然相等,正确;③根据数量关系,同角的余角一定相等,正确.6.图中所标出的角中,共有同位角()A.2对B.3对C.4对D分析解答:选D.判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是考点:同位角、内错角、同旁内角分析:本题考查同位角的定义:在截线的同侧,并且在被截线的同一方的两个角是同位角.解:根据同位角的定义,图中∠3与∠4,∠4与∠5,∠7与∠1,∠5与∠2,∠2与∠3是同位角,共5对.7.如图,其中同旁内角有()A.2对B.4对C.6对D.8对分析解答:选C.判断是否是同旁内角,必须符合“同旁”指在第三条直线的同侧;“内”指在被截两条直线之间.考点:同位角、内错角、同旁内角.分析:根据同旁内角的定义,“同旁”指在第三条直线的同侧;“内”指在被截两条直线之间.解答:解:由同旁内角的定义可知:以AB为截线,有一对同旁内角;以BC为截线,有一对同旁内角;以CD为截线,有2对同旁内角;以AD为截线,有2对同旁内角.故图中有6对同旁内角,8.某城市有四条直线型主干道分别为l1,l2,l3,l4,l3和l4相交,l1和l2相互平行且与l3、l4相交成如图所示的图形,则共可得同旁内角()对.A.4B.8C.12D.16分析解答:选D.在较复杂图形中确定“三线八角”可从截线入手,分类讨论,做到不重复不遗漏考点:同位角、内错角、同旁内角.分析:观察图形,确定不同的截线分类讨论,如分1l、2l被3l所截,1l、2l被4l所截,1l、3l被4l所截,2l、3l被l4所截,3l、l4被1l所截,l3、l4被2l所截1l、4l被3l所截,2l、4l被3l所截来讨论.解答:解:1l、l2被l3所截,有两对同旁内角,其它同理,故一共有同旁内角2×8=16对.9.如图,若两条平行线EF,MN与直线AB,CD相交,则图中共有同旁内角的对数为()分析解答:选D.解答此题的关键在掌握同旁内角的概念,注意要对截线的情况进行讨论.考点:同位角、内错角、同旁内角.专题:分类讨论.分析:此题旨在考查同旁内角的定义,要正确解答应把握以下几点:1、分清截线与被截直线,2、作为同旁内角的两个角应在截线的同旁,被截直线之间.解答:解:以CD为截线,①若以EF、MN为被截直线,有2对同旁内角,②若以AB、EF为被截直线,有2对同旁内角,③若以AB、MN为被截直线,有2对同旁内角;综上,以CD为截线共有6对同旁内角.同理:以AB为截线又有6对同旁内角.以EF为截线,以AB、CD为被截直线,有2对同旁内角,以MN为截线,以AB、CD为被截直线,有2对同旁内角,综上,共有16对同旁内角.故10.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行分析解答:选A.本题主要考查平行线的定义及平行公理,熟练掌握公理、定理是解决本题考点:平行线.分析:根据平行线的定义及平行公理进行判断.解答:解:A中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误.B、C、D是公理,正确.11.下列语句中:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角A.4B.8C.12D.16的一对边在同一直线上,另一对边互相平行,则这两个角相等;⑤不在同一直线上的四个点可画6条直线;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.2个B.3个C.4个D.5个分析解答:选C.本题主要考查:平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要学会区分不同概念之间的联系和区别.考点:平行线;相交线;对顶角、邻补角;垂线.分析:根据垂线、对顶角、平行线的定义、角相互间的关系、点与直线的关系进行判断.解答:①一条直线有无数条垂线,故①错误;②不相等的两个角一定不是对顶角,故②正确;③在同一平面内,两条不相交的直线叫做平行线,故③错误;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等或互补,故④错误;⑤不在同一直线上的四个点可画4或6条直线,故⑤错误;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,故⑥正确.所以错误的有4个.12.下列语句:①同一平面上,三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中()A.①、②是正确的命题B.②、③是正确命题C.①、③是正确命题D.以上结论皆错分析解答:选A.熟练掌握平行公理以及平行线的定义,是解决此类问题的关键.注意平行公理是:过直线外一点有且只有一条直线与已知直线平行.考点:平行线;垂线;平行公理及推论.分析:根据平行公理、垂直的定义和平行线的定义进行判断即可.解答:解:①同一平面上,三条直线只有两个交点,则其中两条直线互相平行,正确;②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直,正确;③过直线外一点有且只有一条直线与已知直线平行,所以错误.故①、②是正确的命题,13.下列说法中可能错误的是()A.过一点有且只有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线垂直C.两条直线相交,有且只有一个交点D.若两条直线相交成直角,则这两条直线互相垂直分析解答:选A.本题主要考查公理定义,熟练记忆公理和定义是学好数学的关键考点:平行公理及推论;相交线;垂线.分析:根据平行公理和相交线、垂线的定义利用排除法求解.解答:解:A、应为过直线外一点有且只有一条直线与已知直线平行,错误;B、过一点有且只有一条直线与已知直线垂直,正确;C、两条直线相交,有且只有一个交点,正确;D、若两条直线相交成直角,则这两条直线互相垂直,直线垂直的定义,正确.14.下列选项中正确的是()A.相等的角是对顶角B.两直线平行,同旁内角相等C.直线外一点到这条直线的垂线段,叫点到直线的距离D.经过直线外一点,有且只有一条直线与这条直线平行分析解答:选D.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解考点:平行公理及推论.分析:根据对顶角的性质、平行线的性质、点到直线的距离概念、平行线的公理逐个进行判断,可知D正确.解答:解:A中,只能说对顶角相等,而不是相等的角都是对顶角,错误;B中,两直线平行,同旁内角互补,而不是相等,错误;C中,距离应是垂线段的长度,而不是线段本身,错误;D中,这是平行公理,正确.15.过一点画已知直线的平行线()A.有且只有一条B.不存在C.有两条D.不存在或有且只有一条分析解答:选D.此题的关键在分类讨论,是易错题考点:平行公理及推论.专题:分类讨论.分析:分点在直线上和点在直线外两种情况解答.解答:解:若点在直线上,过这点不能画已知直线的平行线;若点在直线外,根据平行公理,有且只有一条直线与已知直线平行.16.某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A.第一次左拐30°,第二次右拐30°B.第一次右拐50°,第二次左拐130°C.第一次右拐50°,第二次右拐130°D.第一次向左拐50°,第二次向左拐120°选A.点评:本题考查平行线的判定,熟记定理是解决问题的关键.考点:平行线的判定.专题:应用题.分析:两次拐弯后,行驶方向与原来相同,说明两次拐弯后的方向是平行的.对题中的四个选项提供的条件,运用平行线的判定进行判断,能判定两直线平行者即为正确答案.解答:解:如图所示(实线为行驶路线):A符合“同位角相等,两直线平行”的判定,其余均不符合平行线的判定.17.如图,要得到a∥b,则需要条件()A.∠2=∠4B.∠1+∠3=180°C.∠1+∠2=180°D.∠2=∠3选C.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,考点:平行线的判定.分析:在复杂的图形中具有相等关系的两角要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.解答:解:A、∵∠2=∠4,∴c∥d(同位角相等,两直线平行);B、∵∠1+∠3=180°,c∥d(同旁内角互补,两直线平行);C、∵∠1+∠2=180°,∴a∥b(同旁内角互补,两直线平行);D、∠2与∠3不能构成三线八角,无法判定两直线平行.故不能遇到相等或互补关系的角就误认为具有平行关系18.如图,下列说法中,正确的是()A.因为∠2=∠4,所以AD∥BCB.因为∠BAD+∠D
本文标题:七年级直线平行线易错题、经典题分析解答
链接地址:https://www.777doc.com/doc-5922871 .html