您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 8.4列联表独立性检验
8.4列联表独立性分析案例课题:选修2-38.4独立性检验再冷的石头,坐上三年也会暖!课题:选修2-38.4独立性检验再冷的石头,坐上三年也会暖!问题:数学家庞加莱每天都从一家面包店买一块1000g的面包,并记录下买回的面包的实际质量。一年后,这位数学家发现,所记录数据的均值为950g。于是庞加莱推断这家面包店的面包分量不足。•假设“面包份量足”,则一年购买面包的质量数据的平均值应该不少于1000g;•“这个平均值不大于950g”是一个与假设“面包份量足”矛盾的小概率事件;•这个小概率事件的发生使庞加莱得出推断结果。课题:选修2-38.4独立性检验再冷的石头,坐上三年也会暖!一:假设检验问题的原理假设检验问题由两个互斥的假设构成,其中一个叫做原假设,用H0表示;另一个叫做备择假设,用H1表示。例如,在前面的例子中,原假设为:H0:面包份量足,备择假设为:H1:面包份量不足。这个假设检验问题可以表达为:H0:面包份量足←→H1:面包份量不足课题:选修2-38.4独立性检验再冷的石头,坐上三年也会暖!二:求解假设检验问题考虑假设检验问题:H0:面包分量足←→H1:面包分量不足1.在H0成立的条件下,构造与H0矛盾的小概率事件;2.如果样本使得这个小概率事件发生,就能以一定把握断言H1成立;否则,断言没有发现样本数据与H0相矛盾的证据。求解思路:课题:选修2-38.4独立性检验再冷的石头,坐上三年也会暖!2定量变量——回归分析(画散点图、相关系数r、变量相关指数R、残差分析)分类变量——研究两个变量的相关关系:定量变量:体重、身高、温度、考试成绩等等。变量分类变量:性别、是否吸烟、是否患肺癌、宗教信仰、国籍等等。两种变量:独立性检验本节研究的是两个分类变量的独立性检验问题。在日常生活中,我们常常关心分类变量之间是否有关系:例如,吸烟是否与患肺癌有关系?性别是否对于喜欢数学课程有影响?等等。课题:选修2-38.4独立性检验再冷的石头,坐上三年也会暖!吸烟与肺癌列联表不患肺癌患肺癌总计不吸烟7775427817吸烟2099492148总计9874919965为了调查吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果(单位:人)列联表在不吸烟者中患肺癌的比重是在吸烟者中患肺癌的比重是说明:吸烟者和不吸烟者患肺癌的可能性存在差异,吸烟者患肺癌的可能性大。0.54%2.28%探究课题:选修2-38.4独立性检验再冷的石头,坐上三年也会暖!不患肺癌患肺癌总计不吸烟7775427817吸烟2099492148总计98749199651、列联表2、三维柱形图3、二维条形图不患肺癌患肺癌吸烟不吸烟不患肺癌患肺癌吸烟不吸烟080007000600050004000300020001000从三维柱形图能清晰看出各个频数的相对大小。从二维条形图能看出,吸烟者中患肺癌的比例高于不患肺癌的比例。通过图形直观判断两个分类变量是否相关:不吸烟吸烟00.10.20.30.40.50.60.70.80.91不吸烟吸烟患肺癌比例不患肺癌比例4、等高条形图等高条形图更清晰地表达了两种情况下患肺癌的比例。课题:选修2-38.4独立性检验再冷的石头,坐上三年也会暖!课题:选修2-38.4独立性检验再冷的石头,坐上三年也会暖!为了使不同样本容量的数据有统一的评判标准,基于上述分析,我们构造一个随机变量-----卡方统计量22(),()()()()其中为样本容量。nadbcKabcdacbdnabcd(1)若H0成立,即“吸烟与患肺癌没有关系”,则K2应很小。根据表3-7中的数据,利用公式(1)计算得到K2的观测值为:那么这个值到底能告诉我们什么呢?242209956.63278172148987491k9965(777549)(2)独立性检验课题:选修2-38.4独立性检验再冷的石头,坐上三年也会暖!在H0成立的情况下,统计学家估算出如下的概率即在H0成立的情况下,K2的值大于6.635的概率非常小,近似于0.01。2(6.635)0.01.PK(2)也就是说,在H0成立的情况下,对随机变量K2进行多次观测,观测值超过6.635的频率约为0.01。思考206.635?KH如果,就断定不成立,这种判断出错的可能性有多大答:判断出错的概率为0.01。20099657775494220995663278172148987491().kHH现在观测值太大了,在成立的情况下能够出现这样的观测值的概率不超过0.01,因此我们有99%的把握认为不成立,即有99%的把握认为“吸烟与患肺癌有关系”。课题:选修2-38.4独立性检验再冷的石头,坐上三年也会暖!判断是否成立的规则0H如果,就判断不成立,即认为吸烟与患肺癌有关系;否则,就判断成立,即认为吸烟与患肺癌有关系。6.635k0H0H独立性检验的定义上面这种利用随机变量K2来确定在多大程度上可以认为“两个分类变量有关系”的方法,称为两个分类变量的独立性检验。在该规则下,把结论“成立”错判成“不成立”的概率不会差过0H0H2(6.635)0.01,PK即有99%的把握认为不成立。0H课题:选修2-38.4独立性检验再冷的石头,坐上三年也会暖!在实际应用中,要在获取样本数据之前通过下表确定临界值:0.500.400.250.150.100.4550.7081.3232.0722.7060.050.0250.0100.0050.0013.8415.0246.6357.87910.8280)k2P(K0k0k0)k2P(K具体作法是:(1)根据实际问题需要的可信程度确定临界值;(2)利用公式(1),由观测数据计算得到随机变量的观测值;(3)如果,就以的把握认为“X与Y有关系”;否则就说样本观测数据没有提供“X与Y有关系”的充分证据。0k2K0kk20(1())100%PKk随机变量-----卡方统计量22(),()()()()其中为样本容量。nadbcKabcdacbdnabcd独立性检验0.500.400.250.150.100.050.0250.0100.0050.0010.4550.7081.3232.0722.7063.8415.0246.6357.87910.8280k0)k2P(K临界值表828.102K635.62K706.22K22.706K0.1%把握认为A与B无关1%把握认为A与B无关99.9%把握认A与B有关99%把握认为A与B有关90%把握认为A与B有关10%把握认为A与B无关没有充分的依据显示A与B有关,但也不能显示A与B无关课题:选修2-38.4独立性检验再冷的石头,坐上三年也会暖!课题:选修2-38.4独立性检验再冷的石头,坐上三年也会暖!第一步:H0:吸烟和患病之间没有关系患病不患病总计吸烟aba+b不吸烟cdc+d总计a+cb+da+b+c+d第二步:列出2×2列联表6、独立性检验的步骤第三步:计算第四步:查对临界值表,作出判断。))()()(()(22dcbadbcabcadnKP(k≥k0)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828反证法原理与假设检验原理反证法原理:在一个已知假设下,如果推出一个矛盾,就证明了这个假设不成立。假设检验原理:在一个已知假设下,如果一个与该假设矛盾的小概率事件发生,就推断这个假设不成立。课题:选修2-38.4独立性检验再冷的石头,坐上三年也会暖!课题:选修2-38.4独立性检验再冷的石头,坐上三年也会暖!例1在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶。分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?解:根据题目所给数据得到如下列联表:患心脏病不患心脏病总计秃顶214175389不秃顶4515971048总计6657721437相应的三维柱形图如图所示,比较来说,底面副对角线上两个柱体高度的乘积要大一些,因此可以在某种程度上认为“秃顶与患心脏病有关”。患心脏病患其他病1755972144510100200300400500600患心脏病患其他病秃头不秃头课题:选修2-38.4独立性检验再冷的石头,坐上三年也会暖!例1在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶。分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?解:根据题目所给数据得到如下列联表:患心脏病不患心脏病总计秃顶214175389不秃顶4515971048总计6657721437根据联表1-13中的数据,得到221437(214597175451)16.3736.635.3891048665772K所以有99%的把握认为“秃顶患心脏病有关”。课题:选修2-38.4独立性检验再冷的石头,坐上三年也会暖!例3.在500人身上试验某种血清预防感冒作用,把他们一年中的感冒记录与另外500名未用血清的人的感冒记录作比较,结果如表所示。未感冒感冒合计使用血清252248500未使用血清224276500合计4765241000试画出列联表的条形图,并通过图形判断这种血清能否起到预防感冒的作用?并进行独立性检验。解:设H0:感冒与是否使用该血清没有关系。075.7500500526474216242284258100022K因当H0成立时,K2≥6.635的概率约为0.01,故有99%的把握认为该血清能起到预防感冒的作用。P(k≥k0)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828课题:选修2-38.4独立性检验再冷的石头,坐上三年也会暖!P(k≥k0)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828有效无效合计口服584098注射643195合计12271193解:设H0:药的效果与给药方式没有关系。3896.19598711224064315819322K因当H0成立时,K22.406,故不能否定假设H0,即不能作出药的效果与给药方式有关的结论。例4:为研究不同的给药方式(口服与注射)和药的效果(有效与无效)是否有关,进行了相应的抽样调查,调查的结果列在表中,根据所选择的193个病人的数据,能否作出药的效果和给药方式有关的结论?课题:选修2-38.4独立性检验再冷的石头,坐上三年也会暖!P(k≥k0)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828练习:气管炎是一种常见的呼吸道疾病,医药研究人员对两种中草药治疗慢性气管炎的疗效进行对比,所得数据如表所示,问:它们的疗效有无差异?有效无效合计复方江剪刀草18461245胆黄片919100合计27570345解:设H0:两种中草药的治疗效果没有差异。098.11100245702759161918434522K因当H0成立时,K2≥10.828的概率为0.001,故有99.9%的把握认为,两种药物的疗效有差异。
本文标题:8.4列联表独立性检验
链接地址:https://www.777doc.com/doc-6013349 .html