您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 小学数学各年级知识点汇总
1/15知识点汇总额外奉献:六个基本性质1、小数的基本性质:在小数末尾添上零或者去掉零,小数的大小不变。2、分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。3、比的基本性质:比的前项和后项都乘以或者除以相同的数(零除外),比值不变。4、比例的基本性质:在比例里,两个外项的积等于两个内项的积。5、商不变的性质:在除法里,被除数和除数都乘以或者除以相同的数(零除外),商的大小不变。6、等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。一、公式(必须牢记并会应用)1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数10、植树问题A、非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)B、封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数11、盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数12、相遇问题相遇路程=速度和×相遇时间2/15相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间13、追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间14、流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷215、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量16、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)当赚钱时:卖价=成本×(1+赚率)求赚了多少=成本×赚率成本=卖价÷(1+赚率)赚率=[(卖价-成本)÷成本]×100%当赔钱时:卖价=成本×(1-赔率)求赔了多少=成本×赔率成本=卖价÷(1-赔率)赔率=[(成本-卖价)÷成本]×100%打折时:卖价=原价×折扣率减价=原价×(1-折扣率)原价=卖价÷折扣率折扣率=卖价/原价×100%17、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数18、和倍问题的公式和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)19、差倍问题的公式差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)二、小学数学图形计算公式(必背)1、正方形:C=周长、S=面积、a=边长周长=边长×4用字母表示:C=4a面积=边长×边长用字母表示:S=a×a2、正方体:V=体积、a=棱长表面积=棱长×棱长×6用字母表示:S表=a×a×6体积=棱长×棱长×棱长用字母表示:V=a×a×a3、长方形:C=周长、S=面积、a=边长周长=(长+宽)×2用字母表示:C=2(a+b)面积=长×宽用字母表示:S=ab4、长方体:V=体积、s=面积、a=长、b=宽、h=高表面积=(长×宽+长×高+宽×高)×2用字母表示:S=2(ab+ah+bh)3/15体积=长×宽×高用字母表示:V=abh5、三角形:s=面积、a=底、h=高面积=底×高÷2用字母表示:s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形:s=面积、a=底、h=高面积=底×高用字母表示:s=ah7、梯形:s=面积、a=上底、b=下底、h=高面积=(上底+下底)×高÷2用字母表示:s=(a+b)×h÷2-8、圆形:S=面积、C=周长、∏、d=直径、r=半径周长=直径×∏=2×∏×半径用字母表示:C=d∏=2r∏面积=半径×半径×∏用字母表示:S=∏r29、圆柱体:v=体积、h=高、s=底面积、r=底面半径、c=底面周长J侧面积=底面周长×高表面积=侧面积+底面积×2体积=底面积×高体积=侧面积÷2×半径10、圆锥体:v=体积、h=高、s=底面积、r=底面半径体积=底面积×高÷3三、五大运算定律及两个性质五大运算定律1、加法交换律:两数相加交换加数的位置,和不变。用字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。用字母表示:3、乘法交换律:两数相乘,交换因数的位置,积不变。用字母表示:4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。用字母表示:5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。用字母表示:(a+b)×c=a×c+b×c两个性质1、减法的性质(连减):一个数连续减去几个数等于从这个数里减去这几个数的和。用字母表示为:a-b-c=a-(b+c).2、除法的性质(连除):一个数连续除以几个数等于这个数除以这几个数的积。用字母表示为:a÷b÷c=a÷(b×c)外加技巧:乘法简便运算:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都留下,添在积的末尾。四.整数1、整数:自然数和0都是整数。4/152、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。一个物体也没有,用0表示。0也是自然数。3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。4、十进制计数法:每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。5、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。6、数的整除:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。7、倍数和因数:如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。因为35能被7整除,所以35是7的倍数,7是35的因数。一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3,没有最大的倍数。8、能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。例如:202、480、304,都能被2整除。9、能被5整除的数的特征:个位上是0或5的数,都能被5整除,即能用5进行约分。例如:5、30、405都能被5整除。即能用5进行约分。10、能被3整除的数的特征:一个数的各位上的数的和能被3整除,这个数就能被3整除,即能用3进行约分。例如:12、108、204都能被3整除。11、一个数各位数上的和能被9整除,这个数就能被9整除。能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。12、一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。13、一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。14、偶数:能被2整除的数叫做偶数。15、奇数:不能被2整除的数叫做奇数。0也是偶数。自然数按能否被2整除的特征可分为奇数和偶数。16、质数(或素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。17、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12都是合数。1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。18、质因数:每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5叫做15的质因数。19、分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例如把28分解质因数5/1520、公因数:几个数公有的因数,叫做这几个数的公因数。21、最大公因数:其中最大的一个,叫做这几个数的最大公因数,例如12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。其中,1、2、3、6是12和18的公因数,6是它们的最大公因数。22、互质数:公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:A、1和任何自然数互质。B、相邻的两个自然数互质。C、两个不同的质数互质。D、当合数不是质数的倍数时,这个合数和这个质数互质。E、两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。如果两个数是互质数,它们的最大公因数就是1。23、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6、8、10、12、14、16、18……3的倍数有3、6、9、12、15、18……其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。五、小数一、小数的意义把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。二、小数的分类1、纯小数:整数部分是零的小数,叫做纯小数。例如:0.25、0.368都是纯小数。2、带小数:整数部分不是零的小数,叫做带小数。例如:3.25、5.26都是带小数。3、有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.23都是有限小数。4、无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33……3.1415926……5、无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:∏6、循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.555……0.0333……12.109109……6/157、循环节:一个循环小数的小数部分,依次不断重复出现的数字叫
本文标题:小学数学各年级知识点汇总
链接地址:https://www.777doc.com/doc-6333448 .html