您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 六年级奥数专题训练001-工程问题
001-工程问题【工程问题公式】(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。(2)用假设工作总量为“1”的方法解工程问题的公式:1÷工作时间=单位时间内完成工作总量的几分之几;1÷单位时间能完成的几分之几=工作时间。(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。)1.一项工程,甲单独完成需12天,乙单独完成需9天.若甲先做若干天后乙接着做,共用10天完成,问甲做了几天?2.师徒三人合作承包一项工程,8天能够全部完成.已知师傅单独做所需的天数与两个徒弟合作所需天数相同.师傅与徒弟甲合作所需的天数的4倍与徒弟乙单独完成这项工程所需的天数相同.问:两徒弟单独完成这项工程各需多少天?3.一件工作甲先做6小时,乙接着做12小时可以完成.甲先做8小时,乙接着做6小时也可以完成.如果甲做3小时后由乙接着做,还需要多少小时完成?4.一项工程,甲单独做要12小时完成,乙单独做要18小时完成.若甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时,…,两人如此交替工作,问完成任务时,共用了多少小时?5.一个水池有两个排水管甲和乙,一个进水管丙.若同时开放甲、丙两管,20小时可将满池水排空;若同时开放乙、丙两水管,30小时可将满池水排空,若单独开丙管,60小时可将空池注满.若同时打开甲、乙、丙三水管,要排空水池中的满池水,需几小时?6.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?7.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?8.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时?9.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?10.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?11.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵?12.一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?13.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?14.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?15.一项工程,甲独做24天完成,丙独做40天完成,甲、乙、丙三人合做,10天可以完成。这项工程如果由乙来独做,多少天可以完成?例1一件工作,甲做5小时后,再由乙做3小时可以完成;若乙先做9小时后,再由甲做3小时也可以完成。那么甲做1小时以后,由乙做____小时可以完成?讲析:因为“甲做5小时,乙做3小时可以完成”;或者“甲做3小时,乙做9小时也可以完成”。由此得,甲做5-3=2(小时)的工作量,就相当于乙做9-3=6(小时)的工作量。即:甲做1小时,相当于乙做3小时。由“甲做5小时,乙再做3小时完成”,可得:甲少做4小时,就需乙多做3×4=12(小时)。所以,甲做1小时之后,还需要乙再做3+12=15(小时)才能完成。例2如果用甲、乙、丙三根水管同时往一个空水池里灌水,1小时可以灌满;如果用甲、乙两根水管,1小时20分可以灌满;如果用乙、丙两根水管,1小时15分可以灌满。那么,用乙管单独灌水,要灌满一池水需要____小时。讲析:关键是求出乙的工作效率。例3一项挖土方工程,如果甲队单独做,16天可以完成;乙队单独做时,突然遇到地下水,影响施工进度,使得每天少挖了47.25方土,结果共用了10天完成工程。问整个工程要挖多少方土?讲析:甲、乙两队合做,则工效可提高20%,所以每天可以完成例4某工厂的一个生产小组,当每个工人在自己原岗位工作时,9小时可以完成一项生产任务,如果交换工人A和B的工作岗位,其他工人生产效率不变时,可提前1小时完成这项生产任务;如果交换工人C和D的工作岗位,其他工人生产效率不变时,也可以提前1小时完成这项生产任务。问:如果同时交换A与B,C与D的工作岗位,其他工人生产效率不变时,可以提前几分钟完成这项生产任务。所以,同样交换A与B,C与D之后,全组每小时可以完成:例5一批工人到甲、乙两个工地进行清理工作。甲工地的工作量是乙工已做完,乙工地的工作还需4名工人再做1天。那么,这批工人有____人。讲析:把甲、乙两地全部工作量作单位“1”,由“甲工地的工作量是把工人总数作单位“1”,由“上午去甲工地人数是去乙工地人数的3所以,一天中去甲、乙工地人数之比为:例6蓄水池有甲、丙两条进水管,和乙、丁两条排水管。要灌满一池水,单开甲管需要3小时,单开丙管需要5小时。要排光一池水,单开乙管需要丁的顺序循环开各水管,每次每管开1小时,问多少时间后水开始溢出水池?有当开到甲水管时,水才会溢出。溢出。的思路是在假设要打开水管若干个循环之后,水才开始开始溢出。所以,这样解的思路是错误的。参考答案:1.42.甲26又2/3天,乙40天3.214.14又1/35.106.35小时7.甲乙最短合作10天8.乙单独完成需要20小时9.8.5天10.300个11.15棵12.45分钟13.6天14.40分钟15.乙独做30天可以完成6解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。7解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效甲的工效乙的工效。又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天8解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。所以1-9/10=1/10表示乙做6-4=2小时的工作量。1/10÷2=1/20表示乙的工作效率。1÷1/20=20小时表示乙单独完成需要20小时。答:乙单独完成需要20小时。9解:由题意可知1/甲+1/乙+1/甲+1/乙+……+1/甲=11/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)得到1/甲=1/乙×2又因为1/乙=1/17所以1/甲=2/17,甲等于17÷2=8.5天10.答案为300个解120÷(4/5÷2)=300个可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。11.答案是15棵算式:1÷(1/6-1/10)=15棵12.答案45分钟。1÷(1/20+1/30)=12表示乙丙合作将满池水放完需要的分钟数。1/12*(18-12)=1/12*6=1/2表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。1/2÷18=1/36表示甲每分钟进水最后就是1÷(1/20-1/36)=45分钟。13答案为6天解:由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:乙做3天的工作量=甲2天的工作量即:甲乙的工作效率比是3:2甲、乙分别做全部的的工作时间比是2:3时间比的差是1份实际时间的差是3天所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期方程方法:[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1解得x=614答案为40分钟。解:设停电了x分钟根据题意列方程1-1/120*x=(1-1/60*x)*2解得x=4015解在题目条件中,我们可以得到下面的两组等量关系:乙工效=三人工效和-(甲+乙)的工效…………①乙工效×工时=工作总量…………………………②然后,通过巧用“单位1”,还可找到更好的办法:设乙独做,x天可以完成。若把整个工程看作“单位1”,那么乙每天所以,其解答就比较简便、快速而巧妙了:设乙单独做,x天可以完成,则有即乙独做30天可以完成。(答略)
本文标题:六年级奥数专题训练001-工程问题
链接地址:https://www.777doc.com/doc-6574269 .html