您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 北师大版八年级数学上册第4章-一次函数(培优试题)
第四章一次函数4.1函数专题函数图象1.(2012莱芜)下列四幅图象近似刻画两个变量之间的关系,请按图象顺序将下面四种情景与之对应排序()①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系)②向锥形瓶中匀速注水(水面的高度与注水时间的关系)③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系)④一杯越来越凉的水(水温与时间的关系)A.①②③④B.③④②①C.①④②③D.③②④①2.小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为v1,v2,v3,v1<v2<v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系的图象可能是()A.B.C.D.3.早晨小欣与妈妈同时从家里出发,步行与自行车向相反方向的两地上学与上班,如图是他们离家的路程(米)与时间(分钟)之间的函数图象,妈妈骑车走了10分钟时接到小欣的电话,立即以原速度返回并前往学校,若已知小欣步行的速度为50米/分钟,并且妈妈与小欣同时到达学校.完成下列问题:(1)在坐标轴两处的括号内填入适当的数据;(2)求小欣早晨上学需要的时间.答案:1.D【解析】③将常温下的温度计插入一杯热水中温度计的读数一开始较快,后来变慢;②向锥形瓶中匀速注水,水面的高度一开始随注水时间的增加较慢,后来变快;④一杯越来越凉的水,水温随着时间的增加而越来越低;①一辆汽车在公路上匀速行驶,汽车行驶的路程与时间成正比例关系.故顺序为③②④①.故选D.2.C【解析】A.从图象上看小亮走平路的路程不变是不正确的;B.从图象上看小亮走的路程有一段随时间变少了,不正确;C.小亮走的路程应随时间的增大而增大,两次平路的两条直线互相平行,此图象符合,故正确;D.因为平路和上坡路及下坡路的速度不一样,所以不应是一条直线.故选C.3.解:(1)x轴处填20,y轴处填1250;(2)由图象可知,点A的坐标为(10,-2500),说明妈妈骑车速度为250米/分钟,并且返回到家的时间为20分钟,设小欣早晨上学需要的时间为x分钟,则妈妈到家后在B处追到小欣的时间为(x-20)分钟,根据题意得:50x=250(x-20),解得x=25,答:小欣早晨上学需要的时间为25分钟.4.2一次函数与正比例函数专题一次函数探究题1.用m根火柴可以拼成如图1所示的x个正方形,还可以拼成如图2所示的2y个正方形,那么用含x的代数式表示y,得______________.2.将长为38cm、宽为5cm的长方形白纸按如图所示的方法黏合在一起,黏合部分的白纸宽为2cm.(1)求5张白纸黏合的长度;(2)设x张白纸黏合后的总长为ycm,写出y与x的函数关系式(标明自变量x的取值范围);(3)用这些白纸黏合的总长能否为362cm?并说明理由.3.如图所示,结合表格中的数据回答问题:梯形个数12345…图形周长58111417…(1)设图形的周长为l,梯形的个数为n,试写出l与n的函数关系式;(2)求n=11时图形的周长.答案:1.y=35x-15【解析】由图1可知:一个正方形有4条边,两个正方形有4+3条边,∴m=4+3(x-1)=1+3x;由图2可知:一组图形有7条边,两组图形有7+5条边,∴m=7+5(y-1)=2+5y,所以1+3x=2+5y,即y=35x-15.2.解:(1)5张白纸黏合,需黏合4次,重叠2×4=8cm.所以总长为38×5-8=182(cm).(2)x张白纸黏合,需黏合(x-1)次,重叠2(x-1)cm,所以总长y=38x-2(x-1)=36x+2(x≥1,且x为整数).(3)能.当y=362时,得到36x+2=362,解得x=10,即10张白纸黏合的总长为362cm.3.解:(1)由图可以看出图形的周长=上下底的和+两腰长,∴l=3n+2.(2)n=11时,图形周长为3×11+2=35.4.3一次函数的图象专题一根据k、b确定一次函数图象1.如图,在同一直角坐标系内,直线l1:y=(k-2)x+k,和l2:y=kx的位置可能是()ABCD2.下列函数图象不可能是一次函数y=ax-(a-2)图象的是()ABCD已知a、b、c为非零实数,且满足bcacabkabc,则一次函数y=kx+(1+k)的图象一定经过第___________象限.专题二一次函数图象的综合应用4.春节期间,某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开展海产品的运输业务,两货运公司的收费项目及收费标准如下表所示.已知运输路程为120千米,汽车和火车的速度分别为60千米/小时,100千米/小时,以下说法正确的是()运输工具运输费(元/吨•千米)冷藏费(元/吨•小时)过路费(元)装卸及管理费(元)汽车252000火车1.8501600A.当运输货物重量为60吨,选择汽车B.当运输货物重量大于50吨,选择汽车C.当运输货物重量小于50吨,选择火车D.当运输货物重量大于50吨,选择火车5.(2012四川绵阳)某种子商店销售”黄金一号”玉米种子,为惠民促销,推出两种销售方案供采购者选择.方案一:每千克种子价格为4元,无论购买多少均不打折;方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克的,则超过3千克的部分的种子价格打7折.(1)请分别求出方案一和方案二中购买的种子数量x(千克)和付款金额y(元)之间的函数关系式;(2)若你去购买一定量的种子,你会怎样选择方案?说明理由.6.(2012新疆)库尔勒某乡A、B两村盛产香梨,A村有香梨200吨,B村有香梨300吨,现将这批香梨运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨40元和45元,从B村运往C、D两处的费用分别为每吨25元和32元.设从A村运往C仓库的香梨为x吨,A、B两村运往两仓库的香梨运输费用分别为yA和yB元.(1)请填写下表,并求出yA、yB与x之间的函数关系式;(2)当x为何值时,A村的运费较少?(3)请问怎样调运,才能使两村运费之和最小?求出最小值.收地运地CD总计Ax吨200吨B300吨总计240吨260吨500吨答案:1.B【解析】由题意知,分三种情况:(1)当k>2时,y=(k-2)x+k的图象经过第一、二、三象限,y=kx的图象y随x的增大而增大,并且l2比l1倾斜程度大,故C选项错误;(2)当0<k<2时,y=(k-2)x+k的图象经过第一、二、四象限,y=kx的图象y随x的增大而增大,B选项正确;(3)当k<0时,y=(k-2)x+k的图象经过第二、三、四象限,y=kx的图象y随x的增大而减小,但l1比l2倾斜程度大,故A、D选项错误.故选B.2.B【解析】根据图象知:A.a>0,-(a-2)>0.解得0<a<2,所以有可能;B.a<0,-(a-2)<0.两不等式的解没有公共部分,所以不可能;C.a<0,-(a-2)>0.解得a<0,所以有可能;D.a>0,-(a-2)<0.解得a>2,所以有可能.故选B.3.二【解析】由bcacabkabc,化简得2()()abckabc.分两种情况讨论:当a+b+c≠0时,得k=2,此时直线是y=2x+3,过第一、二、三象限;当a+b+c=0时,即a+b=-c,则k=-1,此时直线是y=-x,过第二、四象限.综上所述,该直线必经过第二象限.4.D【解析】设运输x吨货物,根据题意,汽车运费:y=2x×120+5x×12060+200=250x+200,火车运费:y=1.8x×120+5x×120100+1600=222x+1600,①250x+200=222x+1600,解得x=50,∴运输货物为50吨时,选择汽车与火车一样;②250x+200<222x+1600,解得x<50,∴运输货物小于50吨时,选择汽车运输;③250x+200>222x+1600,解得x>50,∴运输货物大于50吨时,选择火车运输.综上所述,D选项符合.故选D.5.解:(1)方案一:y=4x;方案二:当0≤x≤3时,y=5x;当x3时,y=3×5+(x-3)×5×70%=3.5x+4.5.(2)设购买x千克的种子时,两种方案所付金额一样,则4x=3.5x+4.5,解这个方程得x=9,∴当购买9千克种子时,两种方案所付金额相同;当购买种子0<x<3时,方案一所付金额少,选择方案一;当购买种子3≤x<9时,方案一所付金额少,选择方案一;当购买种子质量超过9千克时,方案二所付金额少,应选择方案二.6.解:(1)填写表格如下:收地运地CD总计Ax吨(200-x)吨200吨B(240-x)吨(60+x)吨300吨由题意得yA=40x+45(200-x)=-5x+9000(0≤x≤200),yB=25(240-x)+32(60+x)=7x+7920(0≤x≤200),(2)若yAyB,则-5x+90007x+7920,x90.∴当90x≤200时,yAyB,即A村的运费较少.(3)设两村运费之和为y,则y=yA+yB,∴y=-5x+9000+7x+7920,即y=2x+16920.又∵0≤x≤200时,y随x的增大而增大.∴当x=0时,y有最小值,y最小值=16920(元).因此,由A村调往C仓库的香梨为0吨,调往D仓库为200吨,B村调往C仓库为240吨,调往D仓库60吨时,两村的运费之和最小,最小费用为16920元.总计240吨260吨500吨4.4确定一次函数的表达式专题利用数形求一次函数的表达式1.如图,在△ABC中,∠ACB=90°,AC=25,斜边AB在x轴上,点C在y轴的正半轴上,点A的坐标为(2,0).则直角边BC所在直线的表达式为____________.2.如图,已知一条直线经过A(0,4)、点B(2,0),将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC.求直线CD的函数表达式.3.平面直角坐标系中,点A的坐标是(4,0),点P在直线y=-x+m上,且AP=OP=4.求m的值.答案:1.y=12x+4【解析】点A的坐标为(2,0),则OA=2,又AC=52,OCAO,所以OC=4,即C(0,4).在△ABC中,∠ACB=90°,AC=25,OC⊥AB与O,则AB=10,则OB=8,因而B的坐标是(-8,0),直线BC的表达式是y=12x+4.2.解:设直线AB的表达式为y=kx+b,把A(0,4)、点B(2,0)代入得k=-2,b=4,故直线AB的表达式为y=-2x+4.将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC时,因为平移后的图形与原图形平行,故平移以后的函数表达式为:y=-2x-4.3.解:由已知AP=OP,点P在线段OA的垂直平分线PM上,M为垂足.∵A(4,0),∴OA=AP=OP=4,∴△AOP是等边三角形.如图,当点P在第一象限时,OM=2,OP=4.在Rt△OPM中,PM=22224223OPOM,∴P(2,23).∵点P在y=-x+m上,∴m=2+23.当点P在第四象限时,根据对称性,得P′(2,﹣23).∵点P′在y=-x+m上,∴m=2﹣23.则m的值为2+23或2-23.4.5一次函数图象的应用专题一次函数图象的应用1.(2012湖北武汉)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123,其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③2.如图,点A的坐标为(4,0),点P在第一象限且在直线x+y=6上.(1)设点P坐标为(x,y),写出△OPA的面积S与x之间的关系式(其中P点横坐标在O与A点之间变化);(2)当S=10时,求点P坐标;(3)若△OPA是以OA为底边的等腰三角形,你能求出P的坐标吗?若能,请求出坐标;若不能,请说明理由.3.如图1是甲、乙两个圆柱形水
本文标题:北师大版八年级数学上册第4章-一次函数(培优试题)
链接地址:https://www.777doc.com/doc-6850541 .html