您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 重庆市铜梁县2018届高三上第一次月考数学(理)试题含答案
重庆市铜梁高2018级2017年9月高三月考考试数学(理)试卷考试范围:集合简易逻辑,函数概念,表示,解析式,定义域,值域,函数的性质,指对函数,函数图象,函数与方程;考试时间:120分钟;命题人:朱文平审题人:王伦注意事项:1.答题前填写好自己的姓名、班级、考号等信息。2.请将答案正确填写在答题卡上。第I卷(选择题)一、选择题(本题共12道小题,每小题5分,共60分)1.已知全集U=R,A={x|x2﹣2x<0},B={x|x≥1},则A∪(∁UB)=()A.(0,+∞)B.(﹣∞,1)C.(﹣∞,2)D.(0,1)2.已知集合A={1,2,3,4},B={y|y=3x﹣2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}3.在△ABC中,“ACAB>0”是“△ABC为锐角三角形”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.下列说法错误的是()A.命题“若x2﹣4x+3=0,则x=3”的逆否命题是:“若x≠3,则x2﹣4x+3≠0”B.“x>1”是“|x|>0”的充分不必要条件C.若p且q为假命题,则p、q均为假命题D.命题p:“∃x∈R使得x2+x+1<0”,则¬p:“∀x∈R,均有x2+x+1≥0”5.已知0<a<1,则a2、2a、log2a的大小关系是()A.a2>2a>log2aB.2a>a2>log2aC.log2a>a2>2aD.2a>log2a>a26.函数y=loga(x+2)﹣1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m>0,n>0,则+的最小值为()A.3+2B.3+2C.7D.117.已知f(x)是定义在R上的偶函数,在[0,+∞)上是增函数,若a=f(sin712),b=f(cos75),c=f(tan72),则()A.a>b>cB.c>a>bC.b>a>cD.c>b>a8.若函数y=f(x)对x∈R满足f(x+2)=f(x),且x∈[-1,1]时,f(x)=1﹣x2,g(x)=,则函数h(x)=f(x)﹣g(x)在区间x∈[-5,11]内零点的个数为()A.8B.10C.12D.149设f(x)是定义在R上的恒不为零的函数,对任意实数x,y∈R,都有f(x)•f(y)=f(x+y),若a1=,an=f(n)(n∈N*),则数列{an}的前n项和Sn的取值范围是()A.[,2)B.[,2]C.[,1)D.[,1]10.如图所示,点P从点A处出发,按逆时针方向沿边长为a的正三角形ABC运动一周,O为ABC的中心,设点P走过的路程为x,△OAP的面积为f(x)(当A、O、P三点共线时,记面积为0),则函数f(x)的图象大致为()A.B.C.D.11.设函数f(x)=(x﹣a)|x﹣a|+b,a,b∈R,则下列叙述中,正确的序号是()①对任意实数a,b,函数y=f(x)在R上是单调函数;②对任意实数a,b,函数y=f(x)在R上都不是单调函数;③对任意实数a,b,函数y=f(x)的图象都是中心对称图象;④存在实数a,b,使得函数y=f(x)的图象不是中心对称图象.A.①③B.②③C.①④D.③④12.已知函数,如在区间(1,+∞)上存在n(n≥2)个不同的数x1,x2,x3,…,xn,使得比值==…=成立,则n的取值集合是()A.{2,3,4,5}B.{2,3}C.{2,3,5}D.{2,3,4}第II卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分)13.命题:“∃x∈R,x2﹣x﹣1<0”的否定是.14.定义在R上的奇函数f(x)以2为周期,则f(1)=.15.设有两个命题,p:关于x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2﹣x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,则实数a的取值范围是.16.在下列命题中①函数f(x)=在定义域内为单调递减函数;②已知定义在R上周期为4的函数f(x)满足f(2﹣x)=f(2+x),则f(x)一定为偶函数;③若f(x)为奇函数,则f(x)dx=2f(x)dx(a>0);④已知函数f(x)=ax3+bx2+cx+d(a≠0),则a+b+c=0是f(x)有极值的充分不必要条件;⑤已知函数f(x)=x﹣sinx,若a+b>0,则f(a)+f(b)>0.其中正确命题的序号为(写出所有正确命题的序号).三、解答题(本题共7道小题,第1题12分,第2题12分,第3题12分,第4题12分,第5题12分,第6题10分,第7题10分,共70分)17.已知集合A={x|x2﹣4x﹣5≤0},函数y=ln(x2﹣4)的定义域为B.(Ⅰ)求A∩B;(Ⅱ)若C={x|x≤a﹣1},且A∪(∁RB)⊆C,求实数a的取值范围.18.已知关于x的不等式ax2﹣3x+2≤0的解集为{x|1≤x≤b}.(1)求实数a,b的值;(2)解关于x的不等式:baxcx>0(c为常数).19.已知函数f(x)=是定义在(﹣1,1)上的奇函数,且f()=.(1)确定函数f(x)的解析式;(2)证明f(x)在(﹣1,1)上是增函数;(3)解不等式f(t﹣1)+f(t)<0.20.已知关于x的不等式x2﹣(a2+3a+2)x+3a(a2+2)<0(a∈R).(Ⅰ)解该不等式;(Ⅱ)定义区间(m,n)的长度为d=n﹣m,若a∈R,求该不等式解集表示的区间长度的最大值.21.设关于x的方程2x2﹣ax﹣2=0的两根分别为α、β(α<β),函数(1)证明f(x)在区间(α,β)上是增函数;(2)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小.选做第22或23题,若两题均选做,只计第22题的分。22.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),直线C2的方程为y=,以O为极点,以x轴正半轴为极轴建立极坐标系,(1)求曲线C1和直线C2的极坐标方程;(2)若直线C2与曲线C1交于A,B两点,求+.23.已知函数f(x)=|x|+|x+1|.(1)解关于x的不等式f(x)>3;(2)若∀x∈R,使得m2+3m+2f(x)≥0成立,试求实数m的取值范围.重庆市铜梁一中高2018级2017年9月高三入学考试数学(理)答案1-----5.CDBCB,6---10,ABDCA,11-12,AB7.B【考点】奇偶性与单调性的综合.【解答】解:根据题意,sin=sin(2π﹣)=﹣sin,则a=f(sin)=f(﹣sin),cos=cos(π﹣)=﹣cos,b=f(﹣cos),又由函数f(x)是定义在R上的偶函数,则a=f(sin)=f(﹣sin)=f(sin),b=f(﹣cos)=f(cos),又由<<,则有0<cos<sin<1<tan,又由函数在[0,+∞)上是增函数,则有c>a>b;故选:B.8.D【考点】函数零点的判定定理.【解答】解:函数h(x)=f(x)﹣g(x)的零点,即方程函数f(x)﹣g(x)=0的根,也就是两个函数y=f(x)与y=g(x)图象交点的横坐标,由f(x+2)=f(x),可得f(x)是周期为2的周期函数,又g(x)=,作出两函数的图象如图:∴函数h(x)=f(x)﹣g(x)在区间内零点的个数为14.故选:D.9.C【考点】抽象函数及其应用.【解答】解:∵对任意x,y∈R,都有f(x)•f(y)=f(x+y),∴令x=n,y=1,得f(n)•f(1)=f(n+1),即==f(1)=,∴数列{an}是以为首项,以为等比的等比数列,∴an=f(n)=()n,∴Sn==1﹣()n∈[,1).故选C.10,A【考点】3O:函数的图象.【解答】解:由三角形的面积公式知,当0≤x≤a时,f(x)=•x••a=ax,故在[0,a]上的图象为线段,故排除B;当a<x≤a时,f(x)=•(a﹣x)••a=a(a﹣x),故在(a,a]上的图象为线段,故排除C,D;故选A.11.A【考点】3O:函数的图象.【分析】可先考虑函数g(x)=x|x|的单调性和图象的对称性,然后考虑将函数g(x)的图象左右平移和上下平移,得到函数f(x)=(x﹣a)|x﹣a|+b的图象,观察它的上升还是下降和对称性.【解答】解:设函数g(x)=x|x|即g(x)=,作出g(x)的图象,得出g(x)在R上是单调增函数,且图象关于原点对称,而f(x)=(x﹣a)|x﹣a|+b的图象可由函数y=g(x)的图象先向左(a<0)或向右(a>0)平移|a|个单位,再向上(b>0)或向下(b<0)平移|b|个单位得到.所以对任意的实数a,b,都有f(x)在R上是单调增函数,且图象关于点(a,b)对称.故选:A12.B【考点】分段函数的应用.【分析】==…=的几何意义为点(xn,f(xn))与原点的连线有相同的斜率,利用数形结合即可得到结论.【解答】解:∵的几何意义为点(xn,f(xn))与原点的连线的斜率,∴==…=的几何意义为点(xn,f(xn))与原点的连线有相同的斜率,函数的图象,在区间(1,+∞)上,与y=kx的交点个数有1个,2个或者3个,故n=2或n=3,即n的取值集合是{2,3}.故选:B.13.∀x∈R,x2﹣x﹣1≥0.14.0,15.或a≥1【解答】解:p:关于x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0},则0<a<1;q:函数y=lg(ax2﹣x+a)的定义域为R,a=0时不成立,a≠0时,则,解得.如果p∨q为真命题,p∧q为假命题,则命题p与q必然一真一假.∴,或,解得则实数a的取值范围是.故答案为:或a≥1.【点评】本题考查了函数的单调性、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.16.②④⑤【解答】解:对于①,函数f(x)=在定义域内的区间(﹣∞,0)和(0,+∞)上是减函数,∴①错误.对于②,由题意得f(2﹣(x+2))=f(2+(x+2)),即f(﹣x)=f(4+x)=f(x),∴f(x)是偶函数;∴②正确.对于③,根据定积分的几何意义是函数图象与x轴所围成的封闭图形的面积的代数和,且被积函数f(x)是奇函数,得f(x)dx=0,∴③错误.对于④,∵f(x)=ax3+bx2+cx+d(a≠0),∴f′(x)=3ax2+2bx+c;当a+b+c=0时,(2b)2﹣4×3a×(﹣a﹣b)=4b2+12a2+12ab=4+3a2>0,∴f′(x)有二不等零点,f(x)有极值;当f(x)有极值时,f′(x)=3ax2+2bx+c有二不等零点,即4b2﹣12ac>0,不能得出a+b+c=0;∴是充分不必要条件,④正确.对于⑤,∵f(x)=x﹣sinx,∴f′(x)=1﹣cosx≥0,∴f(x)是增函数,∴当a+b>0时,a>﹣b,∴f(a)>f(﹣b);又∵f(﹣x)=﹣x﹣sin(﹣x)=﹣(x﹣sinx)=﹣f(x),∴f(x)是奇函数,∴f(﹣b)=﹣f(b);∴f(a)>﹣f(b),即f(a)+f(b)>0;∴⑤正确.综上,正确的命题是②④⑤;故答案为:②④⑤.17.【考点】18:集合的包含关系判断及应用;交集及其运算.【解答】解:(Ⅰ)由x2﹣4x﹣5≤0,得:﹣1≤x≤5.∴集合A={x|﹣1≤x≤5}.由x2﹣4>0,得:x>2或x<﹣2.∴集合B={x|x>2或x<﹣2}.那么:A∩B={x|2<x≤5}.(Ⅱ)∵集合B={x|x>2或x<﹣2}.∴∁RB={x|﹣2≤x≤2}.∴A∪(∁RB)={x﹣|2<x≤5}.∵C={x|x≤a﹣1},A∪(∁RB)⊆C,∴a﹣1≥5,得:a≥6故得a的取值范围为[6,+∞).18.【解答】解:(1)由题意知1,b为关于x的方程ax2﹣3x+2=0的两根,则,∴a=1,b=2.(2)不等式等价于(x﹣c)(x﹣2)>0,所以:当c>2时解集为{x|x>c或x<2};当c=2时解集为{x|x≠2,x∈R};当c<2时解集为{x|x>2或x<c}.19.【考点】奇偶性与单调性的综合.【解答】(1)解:函数f(x)=是定义
本文标题:重庆市铜梁县2018届高三上第一次月考数学(理)试题含答案
链接地址:https://www.777doc.com/doc-7473774 .html