您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 浙江省杭州市2015届中考数学模拟试卷(六)(解析版)
2015年浙江省杭州市中考数学模拟试卷(六)一.选择题(共10小题,每小题3分,共30分)温馨提示:每小题有四个答案,只有一个是正确的,请将正确的答案选出来!1.如果ax2+2x+=(2x+)2+m,则a,m的值分别是()A.2,0B.4,0C.2,D.4,2.下列命题是真命题的有()①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧.A..1个B.2个C.3个D.4个3.设a为﹣的小数部分,b为﹣的小数部分.则﹣的值为()A.+﹣1B.﹣+1C.﹣﹣1D.++14.如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3米,CA=1米,则树的高度为()A.3米B.4米C.4.5米D.6米5.如图,AB是⊙O的直径,∠AOC=110°,则∠D=()A.25°B.35°C.55°D.70°6.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为()A.rB.2rC.rD.3r7.如图,D、E分别为△ABC的边AB、AC上的点,△ACD与△BCD的周长相等,△ABE与△CBE的周长相等,记△ABC的面积为S.若∠ACB=90°,则AD•CE与S的大小关系为()A.S=AD•CEB.S>AD•CEC.S<AD•CED.无法确定8.若不等式ax2+7x﹣1>2x+5对﹣1≤a≤1恒成立,则x的取值范围是()A.2≤x≤3B.﹣1<x<1C.﹣1≤x≤1D.2<x<39.如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为()A.B.C.D.10.如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C的圆心坐标为(0,﹣1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是()A.3B.C.D.4二.填空题(共6小题,每题4分,共24分)温馨提示:填空题应将最简洁最正确的答案填在空格内!11.分解因式:x2﹣4=.12.数据a,4,2,5,3的平均数为b,且a和b是方程x2﹣4x+3=0的两个根,则这组数据的标准差是.13.从﹣1,1,2这三个数字中,随机抽取一个数,记为a,那么,使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形的面积为,且使关于x的不等式组有解的概率为.14.如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧的弧长为.(结果保留π)15.将矩形ABCD沿AE折叠,得到如图所示图形.若∠CED′=56°,则∠AED的大小是°.16.已知,如图,双曲线y=(x>0)与直线EF交于点A,点B,且AE=AB=BF,连结AO,BO,它们分别与双曲线y=(x>0)交于点C,点D,则:(1)AB与CD的位置关系是;(2)四边形ABDC的面积为.三.解答题(共7题,共66分)温馨提示:解答题应将必要的过程呈现出来!17.先化简代数式÷,然后选取一个合适的a值,代入求值.18.在一个不透明的盒子里,装有四个分别标有数字﹣1,﹣2,﹣3,﹣4的小球,它们的形状、大小、质地等完全相同.小强先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;(2)求小强、小华各取一次小球所确定的点(x,y)落在一次函数y=x﹣1的图象上的概率;(3)求小强、小华各取一次小球所确定的数x、y满足y>x﹣1的概率.19.如图,在△ABC中,AB=AC,E是BC中点,点O在AB上,以OB为半径的⊙O经过点AE上的一点M,分别交AB,BC于点F,G,连BM,此时∠FBM=∠CBM.(1)求证:AM是⊙O的切线;(2)当BC=6,OB:OA=1:2时,求,AM,AF围成的阴影部分面积.20.已知关于x的一元二次方程(a﹣1)x2+(2﹣3a)x+3=0.(1)求证:当a取不等于1的实数时,此方程总有两个实数根;(2)若m,n(m<n)是此方程的两根,并且.直线l:y=mx+n交x轴于点A,交y轴于点B.坐标原点O关于直线l的对称点O′在反比例函数的图象上,求反比例函数的解析式;(3)在(2)成立的条件下,将直线l绕点A逆时针旋转角θ(0°<θ<90°),得到直线l′,l′交y轴于点P,过点P作x轴的平行线,与上述反比例函数的图象交于点Q,当四边形APQO′的面积为时,求θ的值.21.如图,在平面直角坐标系中,双曲线y=与一次函数y=kx+b(k>0)分别交于点A与点B,直线与y轴交于点C,把直线AB绕着点C旋转一定的角度后,得到一条新直线.若新直线与双曲线y=﹣相交于点E、F,并使得双曲线y=,y=﹣,连线y=kx+b以及新直线构成的图形能关于某条坐标轴对称,如果点A的横坐标为1,则当k为多少时,点A、点E、点B、点F构成的四边形的面积最小.最小值是多少?22.如图,在菱形ABCD中,AC、BD交于点O,AC=12cm,BD=16cm.动点P在线段AB上,由B向A运动,速度为1cm/s,动点Q在线段OD上,由D向O运动,速度为1cm/s.过点Q作直线EF⊥BD交AD于E,交CD于F,连接PF,设运动时间为t(0<t<8).问:(1)何时四边形APFD为平行四边形?求出相应t的值;(2)设四边形APFE面积为ycm2,求y与t的函数关系式;(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出相应t的值,并求出,P、E两点间的距离;若不存在,说明理由.23.如图1,已知菱形ABCD的边长为2,点A在x轴负半轴上,点B在坐标原点.点D的坐标为(﹣,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0<t<)①是否存在这样的t,使△ADF与△DEF相似?若存在,求出t的值;若不存在,请说明理由;②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)2015年浙江省杭州市中考数学模拟试卷(六)参考答案与试题解析一.选择题(共10小题,每小题3分,共30分)温馨提示:每小题有四个答案,只有一个是正确的,请将正确的答案选出来!1.如果ax2+2x+=(2x+)2+m,则a,m的值分别是()A.2,0B.4,0C.2,D.4,【考点】完全平方公式.【专题】计算题.【分析】运用完全平方公式把等号右边展开,然后根据对应项的系数相等列式求解即可.【解答】解:∵ax2+2x+=4x2+2x++m,∴,解得.故选D.【点评】本题考查了完全平方公式,利用公式展开,根据对应项系数相等列式是求解的关键.2.下列命题是真命题的有()①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧.A..1个B.2个C.3个D.4个【考点】命题与定理.【分析】根据有关的定理和定义作出判断即可得到答案.【解答】解:①对顶角相等正确,是真命题;②两直线平行,内错角相等正确,是真命题;③两个锐角对应相等的两个直角三角形应该是相似,而不是全等,原命题错误,是假命题;④有三个角是直角的四边形是矩形,正确,是真命题;⑤平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,原命题错误,是假命题,故选:C.【点评】本题考查了命题与定理的知识,在判断一个命题正误的时候可以举出反例.3.设a为﹣的小数部分,b为﹣的小数部分.则﹣的值为()A.+﹣1B.﹣+1C.﹣﹣1D.++1【考点】二次根式的化简求值.【分析】首先分别化简所给的两个二次根式,分别求出a、b对应的小数部分,然后代、化简、运算、求值,即可解决问题.【解答】解:∵﹣=﹣===,∴a的小数部分=﹣1;∵﹣===,∴b的小数部分=﹣2,∴﹣====.故选B.【点评】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二次根式的运算法则来分析、判断、解答.4.如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3米,CA=1米,则树的高度为()A.3米B.4米C.4.5米D.6米【考点】相似三角形的应用.【分析】标注字母,判断出△ACD和△ABE相似,再利用相似三角形对应边成比例列式计算即可得解.【解答】解:如图,由题意得,△ACD∽△ABE,∴=,即=,解得BE=6,即树的高度为6米.故选D.【点评】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例的性质.5.如图,AB是⊙O的直径,∠AOC=110°,则∠D=()A.25°B.35°C.55°D.70°【考点】圆周角定理.【分析】由AB是⊙O的直径,∠AOC=110°,可求得∠BOC的度数,又由圆周角定理,可求得∠D的度数.【解答】解:∵AB是⊙O的直径,∠AOC=110°,∴∠BOC=180°﹣∠AOC=70°,∴∠D=∠BOC=35°.故选B.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.6.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为()A.rB.2rC.rD.3r【考点】圆锥的计算.【分析】首先求得围成的圆锥的母线长,然后利用勾股定理求得其高即可.【解答】解:∵圆的半径为r,扇形的弧长等于底面圆的周长得出2πr.设圆锥的母线长为R,则=2πr,解得:R=3r.根据勾股定理得圆锥的高为2r,故选B.【点评】本题主要考查圆锥侧面面积的计算,正确理解圆的周长就是扇形的弧长是解题的关键.7.如图,D、E分别为△ABC的边AB、AC上的点,△ACD与△BCD的周长相等,△ABE与△CBE的周长相等,记△ABC的面积为S.若∠ACB=90°,则AD•CE与S的大小关系为()A.S=AD•CEB.S>AD•CEC.S<AD•CED.无法确定【考点】勾股定理;三角形的面积.【专题】计算题.【分析】根据△BCD与△ACD的周长相等,我们可得出:BC+BD=AC+AD,等式的左右边正好是三角形ABC周长的一半,即,有BC,AC的值,那么就能求出BD的长了,同理可求出AE的长;表示出AE•BD,即可找出与S的大小关系.【解答】解:∵△BCD与△ACD的周长相等,BC=a,AC=b,AB=c,∴BC+BD=AC+AD=,∴AD=﹣b=,同理CE=,∵∠BCA=90°,∴a2+b2=c2,S=ab,可得CE•AD=×==(c2﹣a2﹣b2+2ab)=ab,则S=CE•AD.故选A.【点评】此题考查了勾股定理,以及三角形面积,通过周长相等得出线段的长是解题的关键.8.若不等式ax2+7x﹣1>2x+5对﹣1≤a≤1恒成立,则x的取值范围是()A.2≤x≤3B.﹣1<x<1C.﹣1≤x≤1D.2<x<3【考点】二次函数与不等式(组).【分析】把不等式整理成以关于a的一元一次不等式,然后根据一次函数的增减性列出关于x的不等式组,然后求解即可.【解答】解:由ax2+7x﹣1>2x+5得,ax2+5x﹣6>0,∵当x=0时,﹣6>0不成立,∴x≠0,∴关于a的一次函数y=x2•a+5x﹣6,当a=﹣1时,y=﹣x2+5x﹣6=﹣(x﹣2)(x﹣3),当a=1时,y=x2+5x﹣6=(x﹣1)(x+6),∵不等式
本文标题:浙江省杭州市2015届中考数学模拟试卷(六)(解析版)
链接地址:https://www.777doc.com/doc-7562232 .html