您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高考数学普通高等学校招生全国统一考试115
绝密★启用前高考数学普通高等学校招生全国统一考试115数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.满分150分,考试时间120分钟.注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案标号.答在试卷上的答案无效.参考公式:如果事件A、B互斥,那么球的表面公式P(A+B)=P(A)+P(B)S=4πR2如果事件A、B相互独立,那么其中R表示球的半径P(AB)=P(A)P(B)球的体积公式如果事件A在一次试验中发生的概率是P,那么V=43πR2n次独立重复试验中恰好发生k次的概率其中R表示球的半径P(k)=CknPk(1-P)n-k本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.第Ⅰ卷(选择题共30分)一、选择题(1)已知集合M={x|x<3},N={x|log2x>1},则M∩N=(A)(B){x|0<x<3}(C){x|1<x<3}(D){x|2<x<3}(2)函数y=sin2xcos2x的最小正周期是(A)2π(B)4π(C)π4(D)π2(3)3(1-i)2=(A)32i(B)-32i(C)i(D)-i(4)过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为(A)316(B)916(C)38(D)932(5)已知△ABC的顶点B、C在椭圆x23+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是(A)23(B)6(C)43(D)12(6)函数y=lnx-1(x>0)的反函数为(A)y=ex+1(x∈R)(B)y=ex-1(x∈R)(C)y=ex+1(x>1)(D)y=ex-1(x>1)(7)如图,平面α⊥平面β,A∈α,B∈β,AB与两平面α、β所成的角分别为π4和π6,过A、B分别作两平面交线的垂线,垂足为A′、B′,则AB∶A′B′=(A)2∶1(B)3∶1(C)3∶2(D)4∶3(8)函数y=f(x)的图像与函数g(x)=log2x(x>0)的图像关于原点对称,则f(x)的表达式为(A)f(x)=1log2x(x>0)(B)f(x)=log2(-x)(x<0)(C)f(x)=-log2x(x>0)(D)f(x)=-log2(-x)(x<0)(9)已知双曲线x2a2-y2b2=1的一条渐近线方程为y=43x,则双曲线的离心率为(A)53(B)43(C)54(D)32(10)若f(sinx)=3-cos2x,则f(cosx)=(A)3-cos2x(B)3-sin2x(C)3+cos2x(D)3+sin2x(11)设Sn是等差数列{an}的前n项和,若S3S6=13,则S6S12=(A)310(B)13(C)18(D)19(12)函数191()nfxxn的最小值为(A)190(B)171(C)90(D)45αβABA′B′绝密★启用前2006年普通高等学校招生全国统一考试数学(理工农医类)第Ⅱ卷(本卷共10小题,共90分)注意事项:1.考生不能将答案直接答在试卷上,必须答在答题卡上.2.答题前,请认真阅读答题卡上的“注意事项”.二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡上.(13)在(x4+1x)10的展开式中常数项是(用数字作答)(14)已知△ABC的三个内角A、B、C成等差数列,且AB=1,BC=4,则边BC上的中线AD的长为.(15)过点(1,2)的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k=.(16)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出人.三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知向量sin,11,cosa,b,22.(Ⅰ)若ab,求;(Ⅱ)求ab的最大值.0.00010.00020.00030.00040.00051000150020002500300035004000月收入(元)频率/组距(18)(本小题满分12分)某批产品成箱包装,每箱5件.一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验.设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.(Ⅰ)用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及ξ的数学期望;(Ⅱ)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品级用户拒绝的概率.(19)(本小题满分12分)如图,在直三棱柱ABC-A1B1C1中,AB=BC,D、E分别为BB1、AC1的中点.(Ⅰ)证明:ED为异面直线BB1与AC1的公垂线;(Ⅱ)设AA1=AC=2AB,求二面角A1-AD-C1的大小.(20)(本小题满分12分)设函数f(x)=(x+1)ln(x+1),若对所有的x≥0,都有f(x)≥ax成立,求实数a的取值范围.(21)(本小题满分14分)已知抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且AF→=λFB→(λ>0).过A、B两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明FM→·AB→为定值;(Ⅱ)设△ABM的面积为S,写出S=f(λ)的表达式,并求S的最小值.(22)(本小题满分12分)设数列{an}的前n项和为Sn,且方程x2-anx-an=0有一根为Sn-1,n=1,2,3,….(Ⅰ)求a1,a2;(Ⅱ){an}的通项公式.ABCDEA1B1C12006年普通高等学校招生全国统一考试理科数学试题(必修+选修Ⅱ)参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数—选择题和填空题不给中间分.一、选择题⑴D⑵D⑶A⑷A⑸C⑹B⑺A⑻D⑼A⑽C⑾A⑿C二、填空题⒀45⒁3⒂22⒃25三、解答题17.解:(Ⅰ)若a⊥b,则sinθ+cosθ=0,……………2分由此得tanθ=-1(-π2<θ<π2),所以θ=-π4;………………4分(Ⅱ)由a=(sinθ,1),b=(1,cosθ)得|a+b|=(sinθ+1)2+(1+cosθ)2=3+2(sinθ+cosθ)=3+22sin(θ+π4),………………10分当sin(θ+π4)=1时,|a+b|取得最大值,即当θ=π4时,|a+b|最大值为2+1.……12分18.解:(Ⅰ)ξ可能的取值为0,1,2,3.P(ξ=0)=C24C25·C23C25=18100=950,P(ξ=1)=C14C25·C23C25+C24C25·C13·C12C25=1225P(ξ=2)=C14C25·C13·C12C25+C24C25·C22C25=1550,P(ξ=3)=C14C25·C22C25=125.………………8分ξ的分布列为ξ0123P95012251550125数学期望为Eξ=1.2.(Ⅱ)所求的概率为p=P(ξ≥2)=P(ξ=2)+P(ξ=3)=1550+125=1750……………12分19.解法一:(Ⅰ)设O为AC中点,连接EO,BO,则EO∥=12C1C,又C1C∥=B1B,所以EO∥=DB,EOBD为平行四边形,ED∥OB.……2分∵AB=BC,∴BO⊥AC,又平面ABC⊥平面ACC1A1,BO面ABC,故BO⊥平面ACC1A1,∴ED⊥平面ACC1A1,BD⊥AC1,ED⊥CC1,∴ED⊥BB1,ED为异面直线AC1与BB1的公垂线.……6分(Ⅱ)连接A1E,由AA1=AC=2AB可知,A1ACC1为正方形,∴A1E⊥AC1,又由ED⊥平面ACC1A1和ED平面ADC1知平面ADC1⊥平面A1ACC1,∴A1E⊥平面ADC1.作EF⊥AD,垂足为F,连接A1F,则A1F⊥AD,∠A1FE为二面角A1-AD-C1的平面角.不妨设AA1=2,则AC=2,AB=2ED=OB=1,EF=AE×EDAD=23,tan∠A1FE=3,∴∠A1FE=60°.所以二面角A1-AD-C1为60°.………12分解法二:(Ⅰ)如图,建立直角坐标系O-xyz,其中原点O为AC的中点.设A(a,0,0),B(0,b,0),B1(0,b,2c).则C(-a,0,0),C1(-a,0,2c),E(0,0,c),D(0,b,c).……3分ED→=(0,b,0),BB1→=(0,0,2c).ED→·BB1→=0,∴ED⊥BB1.又AC1→=(-2a,0,2c),ED→·AC1→=0,∴ED⊥AC1,……6分所以ED是异面直线BB1与AC1的公垂线.(Ⅱ)不妨设A(1,0,0),则B(0,1,0),C(-1,0,0),A1(1,0,2),BC→=(-1,-1,0),AB→=(-1,1,0),AA1→=(0,0,2),BC→·AB→=0,BC→·AA1→=0,即BC⊥AB,BC⊥AA1,又AB∩AA1=A,∴BC⊥平面A1AD.又E(0,0,1),D(0,1,1),C(-1,0,1),EC→=(-1,0,-1),AE→=(-1,0,1),ED→=(0,1,0),EC→·AE→=0,EC→·ED→=0,即EC⊥AE,EC⊥ED,又AE∩ED=E,∴EC⊥面C1AD.……10分cos<EC→,BC→>=EC→·BC→|EC→|·|BC→|=12,即得EC→和BC→的夹角为60°.所以二面角A1-AD-C1为60°.………12分ABCDEA1B1C1OFABCDEA1B1C1Ozxy20.解法一:令g(x)=(x+1)ln(x+1)-ax,对函数g(x)求导数:g′(x)=ln(x+1)+1-a令g′(x)=0,解得x=ea-1-1,……5分(i)当a≤1时,对所有x>0,g′(x)>0,所以g(x)在[0,+∞)上是增函数,又g(0)=0,所以对x≥0,都有g(x)≥g(0),即当a≤1时,对于所有x≥0,都有f(x)≥ax.……9分(ii)当a>1时,对于0<x<ea-1-1,g′(x)<0,所以g(x)在(0,ea-1-1)是减函数,又g(0)=0,所以对0<x<ea-1-1,都有g(x)<g(0),即当a>1时,不是对所有的x≥0,都有f(x)≥ax成立.综上,a的取值范围是(-∞,1].……12分解法二:令g(x)=(x+1)ln(x+1)-ax,于是不等式f(x)≥ax成立即为g(x)≥g(0)成立.……3分对函数g(x)求导数:g′(x)=ln(x+1)+1-a令g′(x)=0,解得x=ea-1-1,……6分当x>ea-1-1时,g′(x)>0,g(x)为增函数,当-1<x<ea-1-1,g′(x)<0,g(x)为减函数,……9分所以要对所有x≥0都有g(x)≥g(0)充要条件为ea-1-1≤0.由此得a≤1,即a的取值范围是(-∞,1].……12分21.解:(Ⅰ)由已知条件,得F(0,1),λ>0.设A(x1,y1),B(x2,y2).由AF→=λFB→,即得(-x1,1-y)=λ(x2,y2-1),-x1=λx2①1-y1=λ(y2-1)②将①式两边平方并把y
本文标题:高考数学普通高等学校招生全国统一考试115
链接地址:https://www.777doc.com/doc-7779714 .html