您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2015-2016学年中山市八年级上期中数学试卷含答案解析
2015-2016学年广东省中山市八年级(上)期中数学试卷一.选择题:(每小题3分,共30分)1.已知三角形两边分别为2和5,则第三边可能是()A.2B.3C.5D.82.如图,∠1=()A.40°B.50°C.60°D.70°3.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于()A.45°B.60°C.75°D.90°4.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.5.正n边形每个内角的大小都为108°,则n=()A.5B.6C.7D.86.如图,给出以下四组条件,能够证明△ABC≌△DEF的有()组①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠A=∠D,AC=DF,∠B=∠E;④AB=DE,BC=EF,∠A=∠D.A.1B.2C.3D.47.如图所示,在Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于D,交AB于点E.当∠B=30°时,图中不一定相等的线段有()A.AC=AE=BEB.AD=BDC.AC=BDD.CD=DE8.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°9.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个10.如图,在等腰直角△ABC中,∠ACB=90°,O是AB边上的中点,点D,E分别在AC,BC边上,且∠DOE=90°,DE交OC于P,下列结论正确的共有()①图中的全等三角形共有3对;②AD=CE;③∠CDO=∠BEO;④OC=DC+CE;⑤△ABC的面积是四边形DOEC面积的2倍.A.2个B.3个C.4个D.5个二.填空题:(每小题4分,共24分)11.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是__________.12.如图,在△ABC中,AD平分∠BAC,BE是高,∠BAC=50°,∠EBC=20°,则∠ADC等于__________.13.一个正多边形的内角和是外角和的4倍,这个多边形是__________边形,每个内角是__________度.14.在△ABC中,AB=AC,AF⊥BC,BD=CE,则图中全等三角形共有__________对.15.在△ABC中,AB=AC=13,AB的垂直平分线交AB于D,交AC于E.若△EBC的周长是21,则BC=__________;若∠A=40°,则∠EBC=__________°.16.如图,∠3=∠4,要说明△ABC≌△DCB,若依据“SAS”则需添加的条件是__________,若依据“AAS”则需添加的条件是__________.三.解答题:(17′19每题6分,20~22每题7分,23~25每题9分,共66分)17.作图题,求作一点P,使PM=PN,且到∠AOB的两边距离也相等.18.在平面坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3)(1)在图中根据点的坐标标出点A,点B,点C;(2)作出△ABC关于y轴对称的△A1B1C1;(2)写出A1,B1,C1的坐标.19.请作出四边形ABCD关于直线的轴对称图形.(不写作法,但要保留作图痕迹)20.如图,AD是△ABC边BC上的高,BE平分∠ABC交AD于点E.若∠C=60°,∠BED=70°.求∠ABC和∠BAC的度数.21.已知:如图,∠1=∠2,∠3=∠4.求证:AC=AD.22.已知:如图,点E、A、C在同一条直线上,AB=CE,AC=CD,BC=ED.求证:AB∥CD.23.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=40°,求∠DBC的度数;(3)若AE=6,△CBD的周长为20,求△ABC的周长.24.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.求证:(1)△ACD≌△BEC;(2)CF⊥DE.25.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG.试猜想线段AD与AG的数量及位置关系,并证明你的猜想.2015-2016学年广东省中山市八年级(上)期中数学试卷一.选择题:(每小题3分,共30分)1.已知三角形两边分别为2和5,则第三边可能是()A.2B.3C.5D.8【考点】三角形三边关系.【分析】根据三角形的三边关系定理可得5﹣2<x<5+2,计算出不等式的解集,再确定x的值即可.【解答】解:设第三边长为x,则5﹣2<x<5+2,3<x<7,故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.2.如图,∠1=()A.40°B.50°C.60°D.70°【考点】三角形的外角性质.【分析】根据三角形的外角的性质计算即可.【解答】解:∠1=130°﹣60°=70°,故选:D.【点评】本题考查的是三角形的外角的性质,三角形的一个外角等于和它不相邻的两个内角的和.3.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于()A.45°B.60°C.75°D.90°【考点】三角形内角和定理.【分析】首先根据∠A:∠B:∠C=3:4:5,求出∠C的度数占三角形的内角和的几分之几;然后根据分数乘法的意义,用180°乘以∠C的度数占三角形的内角和的分率,求出∠C等于多少度即可.【解答】解:180°×==75°即∠C等于75°.故选:C.【点评】此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.4.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.正n边形每个内角的大小都为108°,则n=()A.5B.6C.7D.8【考点】多边形内角与外角.【分析】利用正多边形的性质得出其外角,进而得出多边形的边数.【解答】解:∵正n边形每个内角的大小都为108°,∴每个外角为:72°,则n==5.故选:A.【点评】此题主要考查了多边形内角与外角,正确得出其外角度数是解题关键.6.如图,给出以下四组条件,能够证明△ABC≌△DEF的有()组①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠A=∠D,AC=DF,∠B=∠E;④AB=DE,BC=EF,∠A=∠D.A.1B.2C.3D.4【考点】全等三角形的判定.【分析】要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.【解答】解:①AB=DE,BC=EF,AC=DF,满足SSS,能证明△ABC≌△DEF;②AB=DE,∠B=∠E,BC=EF,满足SAS,能证明△ABC≌△DEF;③∠A=∠D,AC=DF,∠B=∠E,满足AAS,能证明△ABC≌△DEF;④AB=DE,BC=EF,∠A=∠D,只是SSA,不能证明△ABC≌△DEF,故选C【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.7.如图所示,在Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于D,交AB于点E.当∠B=30°时,图中不一定相等的线段有()A.AC=AE=BEB.AD=BDC.AC=BDD.CD=DE【考点】线段垂直平分线的性质;角平分线的性质;含30度角的直角三角形.【分析】分别根据线段垂直平分线及角平分线的性质对四个答案进行逐一判断即可.【解答】解:∵∠B=30°,∠C=90°,∴∠BAC=60°,AC=,∵DE是AB的垂直平分线,∴AD=BD,AE=BE=AB,∴∠DAB=30°,AC=AE=BE,故A、B正确;∴∠CAD=30°,∴AD是∠BAC的平分线∵CD⊥AC,DE⊥AB,∴CD=DE,故D正确;故选C.【点评】本题考查的是线段垂直平分线及角平分线的性质、直角三角形的性质,涉及面较广,难度适中.8.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD中,AB=AD,∠B=70°,∴∠B=∠ADB=70°,∴∠ADC=180°﹣∠ADB=110°,∵AD=CD,∴∠C=(180°﹣∠ADC)÷2=(180°﹣110°)÷2=35°,故选:A.【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.9.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个【考点】等腰三角形的判定与性质.【分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选D.【点评】此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形外角的性质、三角形的角平分线定义等,解题时要找出所有的等腰三角形,不要遗漏.10.如图,在等腰直角△ABC中,∠ACB=90°,O是AB边上的中点,点D,E分别在AC,BC边上,且∠DOE=90°,DE交OC于P,下列结论正确的共有()①图中的全等三角形共有3对;②AD=CE;③∠CDO=∠BEO;④OC=DC+CE;⑤△ABC的面积是四边形DOEC面积的2倍.A.2个B.3个C.4个D.5个【考点】全等三角形的判定与性质;等腰直角三角形.【分析】根据等腰三角形的性质,直角三角形斜边上的中线性质,三角形内角和定理,等腰三角形的性质得出∠A=∠B=45°,CO=AO=BO,CO⊥AB,∠ACO=∠BCO=45°,求出∠A=∠ECO,∠B=∠DCO,∠COA=∠COB=90°,∠AOD=∠COE,∠COD=∠BOE,根据ASA推出△COE≌△AOD,△COD≌△BOE,根据全等三角形的性质得出S△COE=S△AOD,AD=CE,∠CDO=∠BEO,再逐个判断即可.【解答】解:∵在等腰直角△ABC中,∠ACB=90°,O是AB边上的中点,∴∠A=∠B=45°,CO=AO=BO,CO⊥AB,∠ACO=∠BCO=45°,∴∠A=∠ECO,∠B=∠DCO,∠COA=∠COB=90°,∵∠DOE=90°,∴∠AOD=∠COE=90°﹣∠COD,∠COD=∠BOE=9
本文标题:2015-2016学年中山市八年级上期中数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7837252 .html