您好,欢迎访问三七文档
第八章立体几何初步第二节空间图形的基本关系与公理2[最新考纲]1.理解空间直线、平面位置关系的定义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.3课前自主回顾41.空间图形的公理(1)公理1:过的三点,有且只有一个平面(即可以确定一个平面).(2)公理2:如果一条直线上的在一个平面内,那么这条直线在此平面内(即直线在平面内).不在一条直线上两点5(3)公理3:如果两个不重合的平面有公共点,那么它们有且只有一条过该点的公共直线.(4)公理4:平行于的两条直线平行.同一条直线一个62.空间中两直线的位置关系(1)空间中两直线的位置关系共面直线______________________异面直线:不同在_____一个平面内任何相交直线平行直线7(2)异面直线所成的角①定义:过空间任意一点P分别引两条异面直线a,b的平行线l1,l2(a∥l1,b∥l2),这两条相交直线所成的就是异面直线a,b所成的角.②范围:.锐角(或直角)0,π28(3)定理(等角定理)空间中,如果两个角的两条边分别对应平行,那么这两个角_____________.相等或互补93.空间中直线与平面、平面与平面的位置关系(1)空间中直线与平面的位置关系位置关系图形表示符号表示公共点直线a在平面α内aα有无数个公共点10直线a与平面α平行a∥α没有公共点直线a与平面α斜交a∩α=A直线在平面外直线a与平面α垂直a⊥α有且只有一个公共点11(2)空间中两个平面的位置关系位置关系图形表示符号表示公共点两平面平行α∥β没有公共点斜交α∩β=l两平面相交垂直α⊥β且α∩β=a有一条公共直线12[常用结论]1.异面直线的判定定理经过平面内一点的直线与平面内不经过该点的直线互为异面直线.2.等角定理的引申(1)在等角定理中,若两角的两边平行且方向相同或相反,则这两个角相等.(2)在等角定理中,若两角的两边平行且方向一个边相同,一个边相反,则这两个角互补.133.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.14一、思考辨析(正确的打“√”,错误的打“×”)(1)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.()(2)两两相交的三条直线最多可以确定三个平面.()(3)如果两个平面有三个公共点,则这两个平面重合.()(4)没有公共点的两条直线是异面直线.()[答案](1)×(2)√(3)×(4)×15二、教材改编1.下列命题正确的是()A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面D[根据确定平面的公理和推论知选项D正确.]162.若直线a不平行于平面α,且aα,则下列结论成立的是()A.平面α内的所有直线与a异面B.平面α内不存在与a平行的直线C.平面α内存在唯一的直线与a平行D.平面α内的直线与a都相交B[由题意知直线a与平面α相交,则平面α内不存在与a平行的直线,故选B.]173.如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成的角的大小为()A.30°B.45°C.60°D.90°18C[连接B1D1,D1C(图略),则B1D1∥EF,故∠D1B1C为所求的角,又B1D1=B1C=D1C,∴∠D1B1C=60°.]194.如图,在三棱锥ABCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形;(2)当AC,BD满足条件________时,四边形EFGH为正方形.20(1)AC=BD(2)AC=BD且AC⊥BD[(1)若四边形EFGH为菱形,则EF=EH,∵EF12AC,EH12BD,∴AC=BD.(2)若四边形EFGH为正方形,则EF=EH且EF⊥EH,∵EF12AC,EH12BD,∴AC=BD且AC⊥BD.]21课堂考点探究22⊙考点1平面基本性质的应用共点、共线、共面问题的证明方法(1)证明点共线问题:①公理法:先找出两个平面,然后证明这些点都是这两个平面的公共点,再根据基本公理3证明这些点都在交线上;②同一法:选择其中两点确定一条直线,然后证明其余点也在该直线上.23(2)证明线共点问题:先证两条直线交于一点,再证明第三条直线经过该点.(3)证明点、直线共面问题:①纳入平面法:先确定一个平面,再证明有关点、线在此平面内;②辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.24(1)以下命题中,正确命题的个数是()①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A,B,C,E共面,则A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.A.0B.1C.2D.325(2)如图,正方体ABCDA1B1C1D1中,E,F分别是AB和AA1的中点.求证:①E,C,D1,F四点共面;②CE,D1F,DA三线共点.26(1)B[①正确,可以用反证法证明,假设任意三点共线,则四个点必共面,与不共面的四点矛盾;②中若点A,B,C在同一条直线上,则A,B,C,D,E不一定共面,故②错误;③中,直线b,c可能是异面直线,故③错误;④中,当四条线段构成空间四边形时,四条线段不共面,故④错误.]27(2)[证明]①如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又∵A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.28②∵EF∥CD1,EFCD1,∴CE与D1F必相交,设交点为P,则由P∈直线CE,CE平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.29证明两条直线平行比证明两条直线相交容易,因此证明四点共面问题时,一般是证明四点所在的两条直线平行.301.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是()ABCD31D[根据异面直线的判定定理,选项D中PS与QR是异面直线,则四点P,Q,R,S不共面.故选D.]322.如图,在正方体ABCDA1B1C1D1中,O为正方形ABCD的中心,H为直线B1D与平面ACD1的交点.求证:D1,H,O三点共线.33[证明]如图,连接BD,B1D1,则BD∩AC=O,因为BB1DD1,所以四边形BB1D1D为平行四边形,又H∈B1D,B1D平面BB1D1D,则H∈平面BB1D1D,34因为平面ACD1∩平面BB1D1D=OD1,所以H∈OD1.即D1,H,O三点共线.35⊙考点2空间两条直线的位置关系36(1)已知a,b,c为三条不同的直线,且a平面α,b平面β,α∩β=c,给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c.其中真命题有________.(填序号)37(2)如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填上所有正确答案的序号).①②③④38(1)①③(2)②④[(1)对于①,若c与a,b都不相交,则c∥a,c∥b,从而a∥b,这与a与b是异面直线矛盾,故①正确.对于②,a与b可能异面垂直,故②错误.对于③,由a∥b可知a∥β,又α∩β=c,从而a∥c,故③正确.(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG(图略),GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面,所以在图②④中,GH与MN异面.]39一些否定性命题不易判断,可从其反面入手.反面成立,则此命题是假命题.如本例T(1),T(2).401.下列结论中正确的是()①在空间中,若两条直线不相交,则它们一定平行;②与同一直线都相交的三条平行线在同一平面内;③一条直线与两条平行直线中的一条相交,那么它也与另一条相交;④空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥c.A.①②③B.②④C.③④D.②③41B[①错,两条直线不相交,则它们可能平行,也可能异面;②显然正确;③错,若一条直线和两条平行直线中的一条相交,则它和另一条直线可能相交,也可能异面;④由平行直线的传递性可知正确.故选B.]422.如图,在正方体ABCDA1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确结论的序号为________.43③④[直线AM与CC1是异面直线,直线AM与BN也是异面直线,所以①②错误.点B,B1,N在平面BB1C1C中,点M在此平面外,所以BN,MB1是异面直线.同理AM,DD1也是异面直线.]44⊙考点3两条异面直线所成的角平移法求异面直线所成角的步骤平移平移的方法一般有三种类型:(1)利用图中已有的平行线平移;(2)利用特殊点(线段的端点或中点)作平行线平移;(3)补形平移(一作)证明证明所作的角是异面直线所成的角或其补角(二证)45计算在立体图形中,寻找或作出含有此角的三角形,并解之(三计算)取舍因为异面直线所成角θ的取值范围是0°<θ≤90°,所以所作的角为钝角时,应取它的补角作为异面直线所成的角(四取舍)46(1)(2018·全国卷Ⅱ)在正方体ABCDA1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()A.22B.32C.52D.7247(2)(2019·成都模拟)在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.如图,在鳖臑ABCD中,AB⊥平面BCD,且AB=BC=CD,则异面直线AC与BD所成角的余弦值为()A.12B.-12C.32D.-3248(1)C(2)A[(1)如图,连接BE,因为AB∥CD,所以异面直线AE与CD所成的角等于相交直线AE与AB所成的角,即∠EAB.不妨设正方体的棱长为2,则CE=1,BC=2,由勾股定理得BE=5.又由AB⊥平面BCC1B1可得AB⊥BE,所以tan∠EAB=BEAB=52.故选C.49(2)如图,分别取AB,AD,BC,BD的中点E,F,G,O,连接EF,EG,OG,FO,FG,则EF∥BD,EG∥AC,所以∠FEG为异面直线AC与BD所成的角.易知FO∥AB,因为AB⊥平面BCD,所以FO⊥平面BCD,所以FO⊥OG,设AB=2a,则EG=EF=2a,FG=a2+a2=2a,所以∠FEG=60°,所以异面直线AC与BD所成角的余弦值为12,故选A.]50平移法作异面直线所成的角时,利用平行四边形或三角形的中位线是常用的方法.511.如图,在长方体ABCDA1B1C1D1中,AB=2,BC=1,BB1=1,P是AB的中点,则异面直线BC1与PD所成的角等于()A.30°B.45°C.60°D.90°52C[取CD的中点Q,连接BQ,C1Q,∵P是AB的中点,∴BQ∥PD,∴∠C1BQ是异面直线BC1与PD所成的角.在△C1BQ中,C1B=BQ=C1Q=2,∴∠C1BQ=60°,即异面直线BC1与PD所成的角等于60°,故选C.]532.(2017·全国卷Ⅱ)已知直三棱柱ABCA1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.32B.155C.105D.3354C[将直三棱柱ABCA1B1C1补形为
本文标题:2021高考数学一轮复习 第8章 立体几何初步 第2节 空间图形的基本关系与公理课件 文 北师大版
链接地址:https://www.777doc.com/doc-8217718 .html