您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 工作范文 > 命题教学设计赵乾坤【热选4篇】
命题教学设计赵乾坤【热选4篇】【导读】这篇文档“命题教学设计赵乾坤【热选4篇】”由三一刀客最漂亮的网友为您分享整理,希望这篇范文对您有所帮助,喜欢就下载吧!命题教学设计方案【第一篇】命题教学设计方案(二)教学目标1.使学生了解命题、真命题和假命题等概念.2.使学生了解几何命题是由“题设”和“结论”两部分组成.能够初步区分命题的题设和结论,或把命题改写成“如果„„,那么„„”的形式重点和难点分清命题的题设和结论,既是教学的重点又是教学的难点.教学过程一、引入请大家随意说出一些语句,教师把它们写在黑板上.如:(1)对顶角相等吗?(2)作一条线段AB=2cm;(3)我爱初二(1)班;(4)两直线平行,同位角相等;(5)相等的两个角,一定是对顶角.二、新课问:上述语句中,哪些是判断一件事情的句子?答:(3)、(4)、(5)是判断一件事情的句子.教师指出:判断是对事物进行肯定或否定的一种思维形式,判断一件事情的句子,叫做命题.数学课堂里,只研究数学命题,如(4)、(5).例1请大家说出若干个(数学)命题,再分析一下,每一个命题由几部分组成?(1)等角的补角相等;(2)有理数一定是自然数;(3)内错角相等两直线平行;(4)如果a是有理数,那么a2>a;(5)每一个大于4的偶数都可以表示成两个质数之和(即著名的哥德巴赫猜想).教师启发学生得出:一个命题,由题设和结论两部分组成,都可以写成“如果„„,那么„„”的形式,也可以简称为“若A则B”.练习:把上述(1)至(5),都按“如果„„,那么„„”的形式,表述一遍.例2在例1的(1)至(5)个命题中,所作的判断是否都正确?怎么检验各个命题的真伪?(l)“如果两个角是等角的补角,那么这两个角相等.”是正确的命题,已经由补角的定义得到证明.(2)“如果是有理数,那么它一定是自然数”。是不正确的命题(判断),反例如是有理数但不是自然数。(3)“如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.”是正确的命题,已证.(4)“如果a是有理数,那么a>a.”是不正确的命题,反例如a=1,a=a.(5)“如果是一个大于4的偶数,那么它可以表示成两个质数之和.”这个命题,至今没人举出一个反例,说明它不正确;也没有人完全证明它正确.我国著名数学家陈景润,已证明了“每一个大于4的偶数都可以表示成一个质数与两个质数之积的和”,即已经证明了“1+2”,离“1+1”这颗数学王冠上的珍珠,只差“一步之遥”.这是目前世界上对这个命题的真伪的判定,所能达到的最好结果.教师帮助学生归纳:命题既然是一个判断,就有判断是否正确的区别.真命题---如果题设成立那么结论一定成立,这样的命题叫做真命题.假命题---如果题设成立,不能保证结论总是成立,也就是说结论不成立,这样的命题叫做假命题.注意:不是命题与假命题的区别!怎样判断一个命题的真假?检验真理的唯一标准是实践.数学中,判断一个命题是真命题,要经过证明(或以公理形式,即由实践证明的形式出现);判断一个命题是假命题,只需举出一个反例即可.2例3试将下列各个命题的题设和结论相互颠倒或变为否定式,得到新的命题,并判断这些命题的真假.(1)对顶角相等;(2)两直线平行,同位角相等;(3)若a=0,则ab=0;(4)两条直线不平行,则一定相交;(5)凡相等的角都是直角.解:(l)对顶角相等(真);相等的角是对顶角(假);不是对顶角不相等(假);不相等的角不是对顶角(真).(2)两直线平行,同位角相等(真);同位角相等,两直线平行(真);两直线不平行,同位角不相等(真);同位角不相等,两直线不平行(真).(3)若a=0,则ab=0(真);若ab=0,则a=0(假);若a≠0,则ab≠0(假);若ab≠0,则a≠0(真).(4)两条直线不平行,则一定相交(假);两条直线相交,则一定不平行(真);两条直线平行,则一定不相交(真);两条直线不相交,则一定平行(假).(注)本小题如果添上“在同一平面内”的大前提条件,那么假命题将变为真命题.(5)凡相等的角都是直角(假);凡直角都相等(真);凡不相等的角不都是直角(真);凡不都是直角的角不相等(假).说明:本例,尤其是第(5)小题,视学生接受情况,教师灵活掌握.讲还是不讲,讲到什么程度,介不介绍四种命题(原、逆、否、逆否),都有较大的伸缩性.小结:命题---判断一件事情的句子;命题的结构---;如果(题设)„„,那么(结论)„„;命题的真假---正确或错误的判断;四种命题---原、逆、否、逆否.(用投影片显示或挂小黑板)三、作业1.在下列语句中,指出哪些是命题,哪些不是命题.如果是命题,指出命题的真假,并仿照例3说出一些新的命题来.(l)如果AB⊥CD于O,那么∠AOC=90°;(2)取线段AB的中点C;(3)两条直线相交,有且只有一个交点;(4)一个平角的度数是180°;(5)若a=b,则a=b;22(6)如果一个数的末位数字是0,那么它一定能够被5整除;(7)同角的余角相等;(8)周角的一半等于直角.2.选作题判断命题“如果n是自然数,那么n+n+17是质数”的真假.2命题及其关系(教学设计)【第二篇】命题及其关系(1)(教学设计)1.1.1命题教学目标:知识与技能了解命题的概念,会判断一个命题的真假,并会将一个命题改写成“若p,则q”的形式;体会命题的逻辑性。过程与方法:通过学生对命题的判定,总结命题的概念,培养学生的自主学习能力;引导学生学习判断命题的真假性,复习巩固以前所学内容,提高学生掌握知识的牢固性和熟练程度;教会学生改写命题,能从新知识的角度解释所学内容,提高学生对旧知识的理解程度。情感态度与价值观:培养学生严谨缜密的思维习惯,深化学生对数学意义的理解,激发学习兴趣,认识数学的科学价值、应用价值和文化价值;通过探究学习培养学生互助合作的学习习惯,形成良好的思维品质和锲而不舍的钻研精神。教学重点:命题的概念、命题的构成教学难点:分清命题的条件、结论和判断命题的真假教学过程:一、复习回顾、新课引入1、初中已学过命题的知识,请同学们回顾:什么叫做命题?2、下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线a∥b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.2(4)若x=1,则x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。二、师生互动、新课讲解1、定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.例1(课本P2例1)判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)=-2.(6)x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.解略。引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?通过对此问的思考,学生将清晰地认识到定理、推论都是命题.过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成)。紧接着提出问题:命题是否也是由条件和结论两部分构成呢?2.命题的构成――条件和结论定义:从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者“如果p,那么q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题结论.1例2(课本P3例2)指出下列命题中的条件p和结论q,并判断各命题的真假.(1)若整数a能被2整除,则a是偶数.(2)若四边行是菱形,则它的对角线互相垂直平分.(3)若a>0,b>0,则a+b>0.(4)若a>0,b>0,则a+b<0.(5)垂直于同一条直线的两个平面平行.此题中的(1)(2)(3)(4),较容易,估计学生较容易找出命题中的条件p和结论q,并能判断命题的真假。其中设置命题(3)与(4)的目的在于:通过这两个例子的比较,学更深刻地理解命题的定义——能判断真假的陈述句,不管判断的结果是对的还是错的。此例中的命题(5),不是“若P,则q”的形式,估计学生会有困难,此时,教师引导学生一起分析:已知的事项为“条件”,由已知推出的事项为“结论”.过渡:从例2中,我们可以看到命题的两种情况,即有些命题的结论是正确的,而有些命题的结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题.3.命题的分类――真命题、假命题的定义.真命题:如果由命题的条件P通过推理一定可以得出命题的结论q,那么这样的命题叫做真命题.假命题:如果由命题的条件P通过推理不一定可以得出命题的结论q,那么这样的命题叫做假命题.强调:(1)注意命题与假命题的区别.如:“作直线AB”.这本身不是命题.也更不是假命题.(2)命题是一个判断,判断的结果就有对错之分.因此就要引入真命题、假命题的的概念,强调真假命题的大前提,首先是命题。4.怎样判断一个数学命题的真假?(1)数学中判定一个命题是真命题,要经过证明.(2)要判断一个命题是假命题,只需举一个反例即可.例3(课本P3例3):把下列命题写成“若P,则q”的形式,并判断是真命题还是假命题:(1)面积相等的两个三角形全等。(2)负数的立方是负数。(3)对顶角相等。分析:要把一个命题写成“若P,则q”的形式,关键是要分清命题的条件和结论,然后写成“若条件,则结论”即“若P,则q”的形式.课堂练习:(课本P4练习:NO:2,3)例4(tb6000302)把下列命题改写成“若p,则q”的形式,并判断命题的真假。(1)已知x,y为正整数,当y=x+1时,y=3,x=2(3)当m12时,mx-x+1=0无实根4(4)当abc=0时,a=0或b=0或c=02(5)当x-2x-3=0时,x=3或x=-1解:(1)假;(2)假;(3)真;(4)真;(5)真。22例5(tb4900310)设有两个命题p:方程x+mx+1=0有两个不等的负实根,q:4x+4(m-无实根,求使p为真命题同时q也为真命题的m的取值范围。(答:2三、课堂小结,巩固反思:1.什么叫命题?真命题?假命题?2.命题是由哪两部分构成的?3.怎样将命题写成“若P,则q”的形式.4.如何判断真假命题.四、布置作业:A组:1、(课本P8习题1.1A组第1题)2、(tb1140801)下面语句中,是命题的是(A)(A)函数y=x2是偶函数吗?(C)a2=a(D)平行四边形、3、(tb1140802)下面的命题中,是真命题的为(C)(A)若一个四边形的对角线互相平分,则该四边形为正方形(B)集合M={x|x2+x0},则若,则a,b不全为零(D)x2+x+14、(tb1140803)命题“若则且的结论是(D)(A)且5、(tb1140804)“两个全等三角形的面积相等”改写为“若p,则q“的形式为____________________________________________6、(tb1140805)命题“6是自然数且是偶数”的结论是_________________________7、(tb1140806)把下列命题改写这“若p,则q”形式,并判断真假。(1)等底等高的两个三角形是全等三角形(2)被6整除的数既能被3整除又能被2整除。解:(1)若两个三角形等底等高
本文标题:命题教学设计赵乾坤【热选4篇】
链接地址:https://www.777doc.com/doc-10109607 .html