您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 初中数学教案之函数4篇
初中数学教案之函数4篇【导读】这篇文档“初中数学教案之函数4篇”由三一刀客最漂亮的网友为您分享整理,希望这篇范文对您有所帮助,喜欢就下载吧!初中数学教案之函数1初中数学教案之函数今天小编为大家精心整理了1篇有关初中数学教案之函数的相关内容,以供大家阅读!函数教学目标:1、进一步理解函数的概念,能从简单的实际事例中,抽象出函数关系,列出函数解析式;2、使学生分清常量与变量,并能确定自变量的取值范围.3、会求函数值,并体会自变量与函数值间的对应关系.4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量的取值范围的求法.5、通过函数的教学使学生体会到事物是相互联系的.是有规律地运动变化着的.教学重点:了解函数的意义,会求自变量的取值范围及求函数值.教学难点:函数概念的抽象性.教学过程:(一)引入新课:上一节课我们讲了函数的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.生活中有很多实例反映了函数关系,你能举出一个,并指出第1页/共6页式中的自变量与函数吗?1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系.2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系.解:1、y=30ny是函数,n是自变量2、n是函数,a是自变量.(二)讲授新课刚才所举例子中的函数,都是利用数学式子即解析式表示的.这种用数学式子表示函数时,要考虑自变量的取值必须使解析式有意义.如第一题中的学生数n必须是正整数.例1、求下列函数中自变量x的取值范围.(1)(2)(3)(4)(5)(6)分析:在(1)、(2)中,x取任意实数,与都有意义.(3)小题的是一个分式,分式成立的条件是分母不为0.这道题的分母是,因此要求.同理(4)小题的也是分式,分式成立的条件是分母不为0,这道题的分母是,因此要求且.第(5)小题,是二次根式,二次根式成立的条件是被开方第2页/共6页数大于、等于零.的被开方数是.同理,第(6)小题也是二次根式,是被开方数,小结:从上面的例题中可以看出函数的解析式是整数时,自变量可取全体实数;函数的解析式是分式时,自变量的取值应使分母不为零;函数的解析式是二次根式时,自变量的取值应使被开方数大于、等于零.注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要即可.教师可将解题步骤设计得细致一些.先提问本题的分母是什么?然后再要求分式的分母不为零.求出使函数成立的自变量的取值范围.二次根式的问题也与次类似.但象第(4)小题,有些同学会犯这样的错误,将答案写成或.在解一元二次方程时,方程的两根用“或者”联接,在这里就直接拿过来用.限于初中学生的接受能力,教师可联系日常生活讲清“且”与“或”.说明这里与是并且的关系.即2与-1这两个值x都不能取.例2、自行车保管站在某个星期日保管的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管费是每次一辆0.3元.(1)若设一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;(2)若估计前来停放的3500辆次自行车中,变速车的辆次第3页/共6页不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围.解:(1)(x是正整数,(2)若变速车的辆次不小于25%,但不大于40%,则收入在1225元至1330元之间总结:对于反映实际问题的函数关系,应使得实际问题有意义.这样,就要求联系实际,具体问题具体分析.对于函数,当自变量时,相应的函数y的值是.60叫做这个函数当时的函数值.例3、求下列函数当时的函数值:(1)(2)(3)(4)注:本例既锻炼了学生的计算能力,又创设了情境,让学生体会对于x的每一个值,y都有唯一确定的值与之对应.以此加深对函数的理解.(二)小结:这节课,我们进一步地研究了有关函数的概念.在研究函数关系时首先要考虑自变量的取值范围.因此,要求大家能掌握解析式含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并能求出其相应的函数值.另外,第4页/共6页对于反映实际问题的函数关系,要具体问题具体分析.观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以第5页/共6页往学的词语、生活经验联系起来,在发展想象力中发展语言。如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。通过联想,幼儿能够生动形象地描述观察对象。作业:习题13.2A组2、3、5死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。今天的内容就介绍到这里了。第6页/共6页高三数学复习教案函数的图像2高三数学复习教案函数的图像何彩霞教学目标:1、掌握基本初等函数的图像的画法及借助图像掌握函数的性质.2、掌握各种图像变换规则.一、知识梳理作函数图象的两种基本方法:1.描点法:其步骤是:_______、__________、________.(尤其注意特殊点,零点,最大值最小值,与坐标轴的交点)2.图象变换法:平移变换:①水平平移:y=f(x±a)(a>0)的图象,可由y=f(x)的图象向______________平移_____个单位而得到.②竖直平移:y=f(x)±b(b>0)的图象,可由y=f(x)的图象向______________平移个单位而得到.对称变换:①y=f(-x)与y=f(x),y=-f(x)与y=f(x),y=-f(-x)与y=f(x),每组中两个函数图象分别关于__________、_____________、____________对称.②若对定义域内的一切x均有f(x+m)=f(m-x),则y=f(x)的图象关于_______________对称.翻折变换:①y=|f(x)|,作出y=f(x)的图象,将图象位于___________的部分以为对称轴翻折到;②y=f(|x|),作出y=f(x)的图象,将图像位于____________的部分以_______为对称轴将其翻折到.比如y=|sinx|与y=sin|x|.伸缩变换:①y=af(x)(a0)的图象,可将y=f(x)的图象上每点的纵坐标伸(a1时)缩(a0)的图象,可将y=f(x)的图象上每点的横坐标伸(a1时)到原来的________倍得到.二、小题自测1.作出下列函数的图像:(1)且(2)2.将函数的图像向____平移____个单位,就可以得到的图像.3.将函数y=log(x-1)的图象上各点的横坐标缩小到原来的31,再向右平移2半个单位,所得图象的解析式为__________________.3.一次函数的图像在x轴上方,则k的取值范围是_____.4.已知函数与的图像有公共点A,且点A的横坐标为2,则k=___.4三、典型例题题型一作函数的图像例1作出下列函数的图像:题型二函数图像的变换例2.(1)把y=f(3x)的图象向_____平移______个单位得到y=f(3x-1)图象.(2)将函数的图像经过怎样的变换可得到函数的图像?(3)函数的图像的对称轴方程为x=1,则常数a=______.(4)将函数的图像C向左平移1个单位后得到图像D,若图像D关于原点对称,求实数a的值.题型三函数图像的运用例3已知函数(1)求函数f(x)的单调区间,并指出其增减性;(2)求集合使方程有4个不等的实数根变式若函数的图像与x轴有交点,则实数m的范围是?例4已知二次函数的图像以原点为顶点,且过点,反比例函数(1,1)的图像与直线的两个交点的距离为8,(1)求函数f(x)的表达式;(2)证明:当时,关于x的方程有三个实数解.函数的图像_高二数学教案_3函数的图像_高二数学教案_模板函数的图像教学目标(一)知道函数图象的意义;(二)能画出简单函数的图象,会列表、描点、连线;(三)能从图像上由自变量的值求出对应的函数的近似值.教学重点和难点重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象.难点:对已知图象能读图、识图,从图象解释函数变化关系.教学过程设计(一)复习1.什么叫函数?2.什么叫平面直角坐标系?3.在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标?4.如果点A的横坐标为3,纵坐标为5,请用记号表示点A(答:A(3,5)).5.请在坐标平面内画出A点.6.如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序数对一一对应)(二)新课我们在前几节课已经知道,函数关系可以用解析式表示.像y=2x+1就表示以x为自变量时,y是x的函数.这个函数关系中,y与x的对应关系,我们还可以用在坐标平面内画出图象的方法表示.具体做法是第一步:列表.(写出自变量x与函数值的对应表)先确定x的若干个值,然后填入相应的y值.(这种用表格表示函数关系的方法叫做列表法)第二步:描点,对于表中的每一组对应值,以x值作为点的横坐标,以对应的y值作为点的纵坐标,便可画出一个点.也就是由表中给出的有序实数时,在直角坐标中描出相应的点.第三步:连线,按照横坐标由小到大的顺序把相邻两点用线段连结起来,得到的图形就是函数式y=2x+1图象.例1在同一直角坐标系中画出下列函数式的图像:(1)y=-3x;(2)y=-3x+2;(3)y=-3x-3.分析:按照列表、描点、连线三步操作.解:它们的图象分别是图13-25中的(1),(2),(3).例2某化我厂1月到12日生产某种产品的统计资料如下:(1)在直角坐标系中以月份数作为点的横坐标,以该月的产值作为点的纵坐标画出对应的点.把12个点画在同一直角坐标系中.(2)按照月份由小到大的顺序,把每两个点用线段连接起来.(3)解读图像:从图说出几月到几月产量是上升的、下降的或不升不降的.(4)如果从3月到6月的产量是持逐平稳增长的,请在图上查询4月15日的产量大约是多少吨?解:(1),(2)见图13-26.(3)产量上升:1月到2月;3月,4月,5月,6月逐月上升;10月,11月,12月逐月上升.产量下降:8月到9月,9月到10月.产量不升不降:2月到3月;6月到7月,7月到8月.(4)过x轴上的4.5处作y轴的平行线,与图象交于点A,则点A的纵坐标约4.5,所以4月15日的产量约为4.5吨.(三)课堂练习已知函数式y=-2
本文标题:初中数学教案之函数4篇
链接地址:https://www.777doc.com/doc-10155701 .html