您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 工作范文 > 数据挖掘论文精编4篇
精编资料,供您参考数据挖掘论文精编4篇【前言导读】由三一刀客最美丽的网友为您分享整理的“数据挖掘论文精编4篇”文档资料,以供您学习参考,希望这篇文档对您有所帮助,喜欢就分享给朋友们呢!数据挖掘论文1题目:大数据挖掘在智游应用中的探究摘要:大数据和智游都是当下的热点,没有大数据的智游无从谈“智慧”,数据挖掘是大数据应用于智游的核心,文章探究了在智游应用中,目前大数据挖掘存在的几个问题。关键词:大数据;智游;数据挖掘;1引言随着人民生活水平的进一步提高,旅游消费的需求进一步上升,在云计算、互联网、物联网以及移动智能终端等信息通讯技术的飞速发展下,智游应运而生。大数据作为当下的热点已经成了智游发展的有力支撑,没有大数据提供的有利信息,智游无法变得“智慧”。2大数据与智游旅游业是信息密、综合性强、信息依存度高的产业[1],这让其与大数据自然产生了交汇。2010年,江苏省镇江市首先提出“智游”的概念,虽然至今国内外对于智游还没有一个统一的学术定义,但在与大数据相关的描述中,有学者从大数据挖掘在智游中的作用出发,把智游描述为:通过充分收集和管理所有类型和来源的旅游数据,并深入挖掘这些数据的潜在重要价值信息,然后利用这些信息为相关部门或对象提供服务[2]。这一定义充分肯定了在发展智游中,大数据挖掘所起的至关重要的作用,指出了在智游的过程中,数据的收集、储存、管理都是为数据挖掘服务,智游最终所需要的是利用挖掘所得的有用信息。3大数据挖掘在智游中存在的问题2011年,我国提出用十年时间基本实现智游的目标[3],过去几年,国家旅游局的相关动作均为了实现这一目标。但是,在借助大数据推动智游的可持续性发展中,大数据所产生的价值却亟待提高,原因之一就是在收集、储存了大量数据后,对它们深入挖掘不够,没有发掘出数据更多的价值。信息化建设智游的发展离不开移动网络、物联网、云平台。随着大数据的不断发展,国内许多景区已经实现Wi-Fi精编资料,供您参考覆盖,部分景区也已实现人与人、人与物、人与景点之间的实时互动,多省市已建有旅游产业监测平台或旅游大数据中心以及数据可视化平台,从中进行数据统计、行为分析、监控预警、服务质量监督等。通过这些平台,已基本能掌握跟游客和景点相关的数据,可以实现更好旅游监控、产业宏观监控,对该地的旅游管理和推广都能发挥重要作用。但从智慧化的发展来看,我国的信息化建设还需加强。虽然通讯网络已基本能保证,但是大部分景区还无法实现对景区全面、透彻、及时的感知,更为困难的是对平台的建设。在数据共享平台的建设上,除了必备的硬件设施,大数据实验平台还涉及大量部门,如政府管理部门、气象部门、交通、电子商务、旅行社、旅游网站等。如此多的部门相关联,要想建立一个完整全面的大数据实验平台,难度可想而知。大数据挖掘方法大数据时代缺的不是数据,而是方法。大数据在旅游行业的应用前景非常广阔,但是面对大量的数据,不懂如何收集有用的数据、不懂如何对数据进行挖掘和利用,那么“大数据”犹如矿山之中的废石。旅游行业所涉及的结构化与非结构化数据,通过云计算技术,对数据的收集、存储都较为容易,但对数据的挖掘分析则还在不断探索中。大数据的挖掘常用的方法有关联分析,相似度分析,距离分析,聚类分析等等,这些方法从不同的角度对数据进行挖掘。其中,相关性分析方法通过关联多个数据来源,挖掘数据价值。但针对旅游数据,采用这些方法挖掘数据的价值信息,难度也很大,因为旅游数据中冗余数据很多,数据存在形式很复杂。在旅游非结构化数据中,一张图片、一个天气变化、一次舆情评价等都将会对游客的旅行计划带来影响。对这些数据完全挖掘分析,对游客“行前、行中、行后”大数据的实时性挖掘都是很大的挑战。数据安全2017年,数据安全事件屡见不鲜,伴着大数据而来的数据安全问题日益凸显出来。在大数据时代,无处不在的数据收集技术使我们的个人信息在所关联的数据中心留下痕迹,如何保证这些信息被合法合理使用,让数据“可用不可见”[4],这是亟待解决的问题。同时,在大数据资源的开放性和共享性下,个人隐私和公民权益受到严重威胁。这一矛盾的存在使数据共享程度与数据挖掘程度成反比。此外,经过大数据技术的分析、挖掘,个人隐私更易被发现和暴露,从而可能引发一系列社会问题。大数据背景下的旅游数据当然也避免不了数据的精编资料,供您参考安全问题。如果游客“吃、住、行、游、娱、购”的数据被放入数据库,被完全共享、挖掘、分析,那游客的人身财产安全将会受到严重影响,最终降低旅游体验。所以,数据的安全管理是进行大数据挖掘的前提。大数据人才大数据背景下的智游离不开人才的创新活动及技术支持,然而与专业相衔接的大数据人才培养未能及时跟上行业需求,加之创新型人才的外流,以及数据统计未来3~5年大数据行业将面临全球性的人才荒,国内智游的构建还缺乏大量人才。4解决思路在信息化建设上,加大政府投入,加强基础设施建设,整合结构化数据,抓取非结构化数据,打通各数据壁垒,建设旅游大数据实验平台;在挖掘方法上,对旅游大数据实时性数据的挖掘应该被放在重要位置;在数据安全上,从加强大数据安全立法、监管执法及强化技术手段建设等几个方面着手,提升大数据环境下数据安全保护水平。加强人才的培养与引进,加强产学研合作,培养智游大数据人才。参考文献[1]翁凯。大数据在智游中的应用研究[J]。信息技术,2015,24:86-87.[2]梁昌勇,马银超,路彩虹。大数据挖掘,智游的核心[J]。开发研究,2015,5(180):134-139.[3]张建涛,王洋,刘力刚。大数据背景下智游应用模型体系构建[J]。企业经济,2017,5(441):116-123.[4]王竹欣,陈湉。保障大数据,从哪里入手?[N]。人民邮电究,2017-11-30.数据挖掘论文2摘要:主要通过对数据挖掘技术的探讨,对职教多年累积的教学数据运用分类、决策树、关联规则等技术进行分析,从分析的结果中发现有价值的数据模式,科学合理地实现教学评估,让教学管理者能够从中发现教学活动中存在的主要问题以便及时改进,进而辅助管理者决策做好教学管理。关键词:教学评估;数据挖掘;教学评估体系;层次分析法1概述近年来国家对中等职业教育的发展高度重视,在政策扶持与职教工作者的努力下,职业教育获得了蓬勃的发展。如何提高教学质量、培养合格的高技术人才成为职教工作者研究的课题。各种调查研究结果表明:加强精编资料,供您参考师资队伍的建设,强化教师教学评估对教学质量的提高尤为重要。所谓教学评估,就是运用系统科学的方法对教学活动或教育行为的价值、效果作出科学的判断过程。教学评估方式要灵活多样,要多途径、多方位、多形式的发挥评估的导学作用,以鼓励评估为主,充分发挥评估的激励功能,促进教学的健康发展。在中等职业学校多年的教育教学工作中积累了大量的教务管理数据、教师档案数据等,怎样从庞杂大量的数据中挖掘出有效提高教学质量的关键因素是个难题。数据挖掘技术却可以从人工智能的角度很好地解决这一课题。通过数据挖掘技术,得到隐藏在教学数据背后的有用信息,在一定程度上为教学部门提供决策支持信息促使更好地开展教学工作,提高教学质量和教学管理水平,使之能在功能上更加清晰地认识教师教与学生学的关系及促进教育教学改革。2数据挖掘技术数据挖掘的含义数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘应该更正确地命名为“从数据中挖掘知识”。即数据挖掘是对巨大的数据集进行寻找和分析的计算机辅助处理过程,在这一过程中显现先前未曾发现的模式,然后从这些数据中发掘某些内涵信息,包括描述过去和预测未来趋势的信息。人工智能领域习惯称知识发现,而数据库领域习惯将其称为数据挖掘。数据挖掘的基本过程数据挖掘过程包括对问题的理解和提出、数据收集、数据处理、数据变换、数据挖掘、模式评估、知识表示等过程,以上的过程不是一次完成的,其中某些步骤或者全过程可能要反复进行。对问题的理解和提出在开始数据挖掘之前,最基础的工作就是理解数据和实际的业务问题,在这个基础之上提出问题,对目标作出明确的定义。数据挖掘常用的算法分类分析方法:是通过分析训练集中的数据,为每个类别做出准确的描述或建立分析模型或挖掘出分类规则,以便以后利用这个分类规则对其它数据库中的记录进行分类的方法。决策树算法:是一种常用于分类、预测模型的算法,它通过将大量数据有目的的分类,从而找到一些有价值的、潜在的信息。它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。聚类算法:聚类分析处理的数据对象的类是未知的。聚类精编资料,供您参考分析就是将对象集合分组为由类似的对象组成的多个簇的过程。在同一个簇内的对象之间具有较高的相似度,而不同簇内的对象差别较大。关联规则算法:侧重于确定数据中不同领域之间的关系,即寻找给定数据集中的有趣联系。提取描述数据库中数据项之间所存在的潜在关系的规则,找出满足给定支持度和置信度阈值的多个域之间的依赖关系。在以上各种算法的研究中,比较有影响的是关联规则算法。3教学评估体系评价指标体系是教学评估的基础和依据,对评估起着导向作用,因此制定一个科学全面的评价指标体系就成为改革、完善评价的首要目标。评价指标应以指导教学实践为目的,通过评价使教师明确教学过程中应该肯定的和需要改进的地方;以及给出设计评价指标的导向问题。教学评估体系的构建方法层次分析法(简称AHP法)是美国运筹学家T·L·Saaty教授在20世纪70年代初期提出的一种简便、灵活而又实用的多准则决策的系统分析方法,其原理是把一个复杂问题分解、转化为定量分析的方法。它需要建立关于系统属性的各因素多级递阶结构,然后对每一层次上的因素逐一进行比较,得到判断矩阵,通过计算判断矩阵的特征值和特征向量,得到其关于上一层因素的相对权重,并可自上而下地用上一层次因素的相对权重加权求和,求出各层次因素关于系统整体属性(总目标层)的综合重要度。构建教学评估指标体系的作用构建的教学评估指标,作为挖掘库选择教学信息属性的依据。通过AHP方法,能筛选出用来评价教学质量的相关重要属性,从而入选为挖掘库字段,这样就减去了挖掘库中对于挖掘目标来说影响较小的属性,进而大大减少了挖掘的工作量,提高挖掘效率。通过构建教学评估指标,减少了挖掘对象的字段,从而避免因挖掘字段过多,导致建立的决策树过大,出现过度拟合挖掘对象,进而造成挖掘规则不具有很好的评价效果的现象。提高教学质量评估实施工作的效率。4数据挖掘在教学评估中的应用学习效果评价学习评价是教育工作者的重要职责之一。评价学生的学习情况,既对学生起到信息反馈和激发学习动机的作用,又是检查课程计划、教学程序以至教学目的的手段,也是考查学生个别差异、便于因材施教的途径。评价要遵循“评价内容要全面、评价方式精编资料,供您参考要多元化、评价次数要多次化,注重自评与互评的有机结合”的原则。利用数据挖掘工具,对教师业务档案数据库、行为记录数据库、奖励处罚数据库等进行分析处理,可以即时得到教师教学的评价结果,对教学过程出现的问题进行及时指正。另外,这种系统还能够克服教师主观评价的不公正、不客观的弱点,减轻教师的工作量。课堂教学评价课堂教学评价不仅对教学起着调节、控制、指导和推动作用,而且有很强的导向性,是学校教学管理的重要组成部分,是评价教学工作成绩的主要手段。实现对任课教师及教学组织工作效果做出评价,但是更重要的目的是总结优秀的教学经验,为教学质量的稳定提高制定科学的规范。学校每学期都要搞课堂教学评价调查,积累了大量的数据。利用数据挖掘技术,从教学评价数据中进行数据挖掘,将关联规则应用于教师教学评估系统中,探讨教学效果的好坏与老师的年龄、职称、学历之间的联系;确定教师的教学内容的范围和深度是否合适,选择的教学媒体是否适合所选的教学内容和教学对象;讲解的时间是否恰到好处;教学策略是否得当等。从而可以及时地将挖掘出的规则信息反馈给教师。管理部门据此能合理配置班级的上课教师,使学生能够较好地保持良好的学习态度,从而为教学部门提供了决策支持信息,促使教学工作更好地开展。
本文标题:数据挖掘论文精编4篇
链接地址:https://www.777doc.com/doc-10192875 .html