您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 工作范文 > 《的含义与表示》教学方案【精选4篇】
精编资料,供您参考《的含义与表示》教学方案【精选4篇】【前言导读】由三一刀客最美丽的网友为您分享整理的“《的含义与表示》教学方案【精选4篇】”文档资料,以供您学习参考,希望这篇文档对您有所帮助,喜欢就分享给朋友们呢!归纳小结:【第一篇】本节课从实例入手,介绍了集合的常用表示方法,包括列举法、描述法。课后记:【第二篇】课题:集合的含义与表示(2)课型:新授课教学目标:(1)了解集合的表示方法;(2)能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的。意义和作用;教学重点:掌握集合的表示方法;教学难点:选择恰当的表示方法;教学过程:新课教学【第三篇】(一)。子集、空集等概念的教学:比较下面几个例子,试发现两个集合之间的关系:(1),;(2),;(3),由学生通过观察得结论。1、子集的定义:对于两个集合A,B,如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。记作:读作:A包含于(iscontainedin)B,或B包含(contains)A当集合A不包含于集合B时,记作用Venn图表示两个集合间的“包含”关系:新课教学【第四篇】(一)集合的有关概念1、集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是精编资料,供您参考否属于这个总体。2、一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。3、思考1:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流;(3)非负奇数;(4)方程的解;(5)某校2007级新生;(6)血压很高的人;(7)著名的数学家;(8)平面直角坐标系内所有第三象限的点(9)全班成绩好的学生。对学生的解答予以讨论、点评,进而讲解下面的问题。4、关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。(3)无序性:给定一个集合与集合里面元素的顺序无关。(4)集合相等:构成两个集合的元素完全一样。5、元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belongto)A,记作:a∈A(2)如果a不是集合A的元素,就说a不属于(notbelongto)A,记作:aA例如,我们A表示“1~20以内的所有质数”组成的集合,则有3∈A4A,等等。6、集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C…表示,集合的元素用小写的拉丁字母a,b,c,…表示。7、常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R;(二)例题讲解:精编资料,供您参考例1.用“∈”或“”符号填空:(1)8N;(2)0N;(3)-3Z;(4)Q;(5)设A为所有亚洲国家组成的集合,则中国A,美国A,印度A,英国A。例2.已知集合P的元素为,若3∈P且-1P,求实数m的值。(三)课堂练习:课本P5练习1;
本文标题:《的含义与表示》教学方案【精选4篇】
链接地址:https://www.777doc.com/doc-10292539 .html