您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 《全等三角形判定》教学反思(最新4篇)
《全等三角形判定》教学反思(最新4篇)【导读】这篇文档“《全等三角形判定》教学反思(最新4篇)”由三一刀客最漂亮的网友为您分享整理,希望这篇范文对您有所帮助,喜欢就下载吧!全等三角形的判定教学设计【第一篇】《怎样判定三角形全等》教学设计------在“五个一”工程研讨会上的发言巨野高级中学张卫华各位同事,大家好!今天我代表初二老师说一下《怎样判定三角形全等》的设计思路。根据我校“15+30”与“5+6”模式,经过我们初二数学组讨论,我们看看是不是可以这样上一节课。首先这节课是初二开学第二课时,第一课时学生了解了“全等三角形”的概念(即能够完全重合的两个三角形)和性质,在此基础上来探讨如何来判定三角形全等。我们把本节课的目标定为两个:一是要学生经历探索三角形全等的过程,从而理解、信服并掌握“边角边”这一判定方法。二是利用“边角边”定理来说明与全等有关的问题。本课的重点是“边角边”这一定理的应用,难点是这一定理的探索过程。本课将采取“启发诱导”式教学法,用“设疑------探索------发现------应用------小结”的过程,让学生自得知识,自寻方法,自觅规律,自悟原理。下面说一下教学过程。首先对全等三角形的概念加以复习,因为这事本节课探索全等三角形条件的依据。此时学生关于三角形的判定在大脑中就是一张白纸,所以在复习有关概念后设计了这么几个问题:1、请问如何说明三角形是全等的?此时学生能回答的只能是全等的概念,即两个三角形能够完全重合,这恰恰是本节探索的前提基础。2、三角形全等的性质是什么?设计此问题的目的是启发学生从性质出发,逐步探索三角形全等的条件。三角形之所以全等,关键是他们对应的三条边和三个角相等。反之,当三角形的三条边和三个角都相等时,这两个三角形也能完全重合,即全等,但是这样做太麻烦,所以,引导学生从一对元素相等开始,逐步探索全等的条件。下面设置了三个活动,活动后同位之间进行对比。1、保证两个三角形的一条边或一个角相等。2、保证两个三角形的两边相等或两角相等或一边一角相等。这两个活动学生通过对比很容易发现两个三角形不一定全等,所以重点是第三个活动。3、(1)画一个三角形,使它的一个内角为45°,加这个角的两边一边为6厘米,另一边为8厘米,画好后剪下,与同学比较。(2)画一个三角形,两边分别为6厘米、8厘米,且6厘米边的对角为40°,画好后剪下,并与同学比较。学生能发现有两边和一边对角对应相等的两个三角形不一定全等。设计意图:将三角形的画法与三角形全等条件的探索相结合,学生通过画一画、剪一剪、比一比以及教师在多媒体的动画演示自然地从实践中获得“SAS”判定方法,否定“SSA”,突破了本课难点。至此就得到了三角形全等的一种重要的判定方法:“边角边”或“SAS”。下一个环节是应用,多媒体展示几个小练习,以独立思考、小组合作的方式来解决,看学生能解决多少。这种情况下学生应该会出现解题条理不清晰、过程不规范等情况,这样就再通过一个问题规范一下。最后再让学生总结收获与困惑,回顾知识,提炼方法。在整个教学过程中,根据我校要求的教学模式,遵循一个方法:学生能发现的,教师不讲;学生会做的,教师不讲,尽可能让学生多活动、多思考、多交流,教师为他们服务好,定位好自己的角色。谢谢大家!三角形全等判定教学反思【第二篇】《三角形全等的判定》教学反思本节课是人教版八年级数学第十二章第二节的内容,主要探索三角形全等的条件及利用“边边边”解决简单的实际问题,而我所讲授的是第一课时---三角形全等的判定方法一(SSS),它是后面几种判定方法的基础,也是本章的重点及难点.教材看似简单,仔细研究后才发现,对八年级学生来说有些困难,处理不好是难以成功的,况且对学生以后学习几何起着关键作用,因此在上这一课时,我精心设计,从确定一个三角形到得到三角形全等的判定方法这个环节,让学生动手操作,大胆猜想,实践操作,相互交流验证,很好地解决了问题,顺利的完成了本节课的任务,具体表现在以下几个方面:首先,以“配玻璃”引入新课,激起学生的求知欲,让学生感觉到知识来源于生活,从而设计一个探究问题:怎么画一个和已知全等的三角形?你认为至少需哪些条件?激起学生的求知欲,充分让学生自由交流讨论、大胆猜想,在课堂上引导学生发现问题并通过动手操作、交流讨论来解决问题.其次,重点关注“已知一边、两边”包括的情形,以及不能形成的原因,让学生自行找出(或教师引导),通过学生实践,形成认知.然后,利用尺规画一个和已知三角形全等的三角形,引导学生试着画图,展开探究活动,让学生亲身体验,从实践中获得“SSS”条件,培养学生探索、发现、概括规律的能力.本节课在难点的突破、激发学生的兴趣、动手操作和学生板演习题上取得了一定的成功,但是遗憾的是在时间上没能较好的掌握,以致没能布置课后作业,所以在以后的教学中,值得思考的地方是(1)提前让学生准备好学具(如纸、剪刀、圆规等),分组时,优差互补,让人人学有所得.(2)教学时应多关注学生,在学习新知识后,虽然大部分学生掌握了,但少数后进生仍然不理解.总之,在数学课堂教学中,教师需时刻注意给学生提供自己思考的机会,体现学生的主体地位,充分发挥学生的主观能动作用,尽量为学生提供“做中学”的平台,让学生在做的过程中借助自己已有的知识和方法主动探索新知识,扩大自己的知识结构,发展能力,从而使课堂教学真正为学生发展服务,这正是我今后努力的方向.判定三角形全等的教学设计【第三篇】判定三角形全等的教学设计一、教学目标1、通过画图、叠合、实验、观察、合情推理等数学教学活动,探索三角形全等的判定方法;探索并发现了解具备一个相等条件或两个相等条件不能判定两个三角形全等。2、掌握两个三角形全等的判定方法2:两角及其夹边分别相等的两个三角形全等。这个判定方法通常简写成“角边角”或“ASA”。能够初步运用这个判定方法判定两个三角形全等。3、经历探究三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程,培养学生注重思考、善于思考、不断总结的良好思维习惯以及运用数学语言进行表达的能力。二、教学重点判定三角形全等的“角边角”方法(判定方法2)难点:判定方法2的产生过程。三、教学过程(一)创设情境如图,小华不小心把一块三角形玻璃打碎为三块,他能否只带其中一块碎片到商店,就能配出一块和原来一样的三角形玻璃?如果能,带哪一块去?为什么?说明:对于学生的回答,教师可以及时鼓励,但不作评价,留下悬念,引入课题。(二)复习旧知(1)复习提问:什么是全等行?什么是全等三角形?(2)教师利用模板,在黑板上画出ABC和(图1),提出问题:这两个三角形全等吗?如果不通过模板,如何判定两个三角形全等?图1设计意图:目的是让学生探究并了解这两个三角形是用同一个三角形模板画出来的,他们能够完全重合,然后根据全等三角形的定义,这两个三角形全等。说明两个三角形全等,需要三个角分别相等,三条边分别相等)(3)师:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个元素中的一部分,至少需要几个元素对应相等能保证两个三角形全等呢?设计意图:问题的提出使学生产生浓厚的兴趣,激发他们的探究欲望。引导学生先确定探究的思路和方法,进一步培养理性思维。(三)实验与探究探究1:只根据两个三角形有一对元素相等,能保证两个三角形全等吗?1与○2)预设回答有两种情况:a.只有一条边相等(如图2中○;1与○3)b.只有一个角相等(如图2中○;1○2○3○图2设计意图:这样的做的目的就是让依次让学生用叠合的方法探究,发现都不能保证两个三角形完全重合,故不能保证两个三角形全等。从而激发学生在有一对元素相等的情况下,再增加一个相等条件,继续利用叠合的方法进行探究,进一步判定具有两对元素相等的两个三角形是否能全等呢。探究2:只根据两个三角形有两对元素分别相等能保证两个三角形全等吗?1与○2中)预设回答有三种情况:a.两条边相等(图3○;1与○4中)b.两个角相等(图3○;1与○3中)c.一条边及一个角分别相等(图3○;1○2○3○4○图3设计意图:这样的做的目的依次让学生再次用叠合的方法进行探究,发现都满足两对元素相等也不能保证两个三角形完全重合,故不能保证两个三角形全等。学生通过亲自动手操作,实践、自主探索、交流获得新知,同时也渗透了分类的思想,从而一定程度上引导了学生从六个元素中选取部分元素可得到全等三角形。1与○4的基础上,再增加一条边相等,两个三角形探究3师:在探究2中图3○会全等吗?请同学们自己动手实践一下。师:经过同学们自己动手实践,你能指出探究3的条件吗?由此你能得出什么结论?生:两角及其夹边分别相等的两个三角形全等。板书:两角及其夹边分别相等的两个三角形全等。这个判定方法通常简写成“角边角”或“ASA”。(在此处要留给学生较充分的独立思考、探究时间,在探究过程中,提高逻辑推理能力;在总结的过程中培养学生的概括能力和语言表达能力。)判定方法2:两角及其夹边分别相等的两个三角形全等。这个判定方法通常简写成“角边角”或“ASA”。如图4:图4符号语言:在ABC和中,设计意图:在规律得出后,结合图形把该公理用几何符号语言表示,培养学生的符号意识。(四)巩固新知练习1、如图5,已知求证:BEO≌DCO.图5图6练习2、如图6,已知点B,F,C,E在同一条直线,,求证:设计意图:通过本环节的联系,让学生尝试运动角边角判定两个三角形全等的过程,进一步加深对三个条件的理解,能够有效训练学生的表达能力,使学生能够清晰、有条理地表达自己的思考过程,做到言之有理,句句有据。练习3、师:针对本节开头情境中的问题,你认为只带哪块去就可以了?为什么?请同学们互相交流。生:只带c块去就可以了,其依据是全等三角形的判定方法2:两角及其夹边分别相等的两个三角形全等。师:由判定方法2和上边的实际问题可知,已知两角及其夹边遍可以确定一个三角形。进一步巩固了利用角边角判定方法,同时体会数学知识在日常生活中的应用。练习4、课后习题P16第2题和第3题(要求学生完整地写出证明步骤)设计意图:通过本环节的联系,让学生尝试运动角边角判定两个三角形全等的过程,进一步加深对三个条件的理解,能够有效训练学生的表达能力,使学生能够清晰、有条理地表达自己的思考过程,做到言之有理,句句有据。进一步巩固所学的判定方法,并通过规范书写格式,培养学生推理能力,让学生体会合情推理与演绎推理之间相辅相成的关系。(五)课后小结1)这节课通过对三角形全等条件的探究,你有什么收获?2)如何寻找证明全等条件:已知条件包含两部分,一是已知给出的,二是图中隐含的,如公共边、公共角、对顶角等。3)三角形全等是证明三角形中边等、角等的重要依据。(六)作业(七)教学反思这节课是三角形全等的第二节新课,教学目标是通过画图、叠合、实验、观察、合情推理等数学教学活动,探索三角形全等的判定方法;探索并发现了解具备一个相等条件或两个相等条件不能判定两个三角形全等;掌握两个三角形全等的判定方法2:两角及其夹边分别相等的两个三角形全等。这个判定方法通常简写成“角边角”或“ASA”。能够初步运用这个判定方法判定两个三角形全等;经历探究三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程,培养学生注重思考、善于思考、不断总结的良好思维习惯以及运用数学语言进行表达的能力。以下是我对这节课的教学反思:1.从我个人角度来说,我认为我做的相对较好的几点:1)目标明确,重点突出;2)方法得当,有效地调动了学生学习的积极性和主动性;3)练习设计相对合理,由简到易,学生容易消化吸收和理解;4)关注了每位学生,知识落实相对较好。2.从学生角度来说,我认为:1)学生自己能亲自动手操作实践,能够从感性认识上升到理性认识,有效地训练了学生的思维能力,增强了运用数学语言进行表达的能力。;2)学生在课堂上能合作交流,不仅学习了新知识,个人情感也得到了较好的发展;3)学生对判定三角形全等方法2的探究与了解相对较好。三角形全等判定(ASA)教学设计【第四篇】三角形全等判定(角边角)教案臻坚民族学校任可喜一、教学目标1.理解“角
本文标题:《全等三角形判定》教学反思(最新4篇)
链接地址:https://www.777doc.com/doc-10299113 .html