您好,欢迎访问三七文档
数学教学设计4篇【导读】这篇文档“数学教学设计4篇”由三一刀客最漂亮的网友为您分享整理,希望这篇范文对您有所帮助,喜欢就下载吧!数学教学设计1教学设计科目:数学姓名:单位:消元——二元一次方程组的解法(第2课时)(加减消元法)学生情况分析???本班共有学生75人,这些学生大部分积极好学,求知欲强。由于学校教学设备有限,学生动手操作能力较差,创新意识不足,数学应用意识较差。教学内容分析????本节分3课时完成,在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考核归纳概括,发现和总结出消元化归的思想方法。???本节课的重点是使学生学会用加减法解二元一次方程组.这也是一种全新的知识,与在一元一次方程两边都加上、减去同一个数或同一个整式,或者都乘以、除以同一个非零数的情况是不一样的,但运用这项知识(这里也表现为一种方法),有时可以简捷地求出二元一次方程组的解,因此学生同样会表现出一种极大的兴趣.必须充分利用学生学会这种方法的积极性.加减(消元)法是解二元一次方程组的基本方法之一,因此要让学生学会,并能灵活运用。教学目标(一)知识目标1.使学生掌握用加减法解二元一次方程组的步骤。2.能运用加减法解二元一次方程组.(二)能力目标1.培养学生分析问题、解决问题的能力.2.训练学生的运算技巧.(三)德育目标体会解二元一次方程组中的“消元”思想,即通过消元把解二元一次方程组转化成解两个一元一次方程。由此感受化归思想的广泛应用。教学重难点与关键1、会运用加减消元法解二元一次方程组。2、经历探究加减消元法解二元一次方程组的过程,领会“消元”法所体现的“化末知为已知”的化归思想。3、以挥学生在探究中感受数学知识的实际应用价值,养成良好的学习习惯。教学课时一课时教学方法本节课采用:探索——发现——比较“的变式教学法。教学过程一、创设情境,复习导入(1)用代入法解二元一次方程组的基本思想是什么?(2)用代入法解下列方程组,并检验所得结果是否正确.学生活动:口答第(1)题,在练习本上完成第(2)题,一个同学说出结果。上面的方程组中,我们用代入法消去了一个未知数,将“二元”转化为“一元”,从而得到了方程组的解.对于二元一次方程组,是否存在其他方法,也可以消去一个未知数,达到化“二元”为“一元”的目的呢?这就是我们这节课将要学习的内容。教法说明由练习导入新课,既复习了旧知识,又引出了新课题,教学过程中还可以进行代入法和加减法的对比,训练学生根据题目的特点选取适当的方法解题。二、探索新知,讲授新课第(2)题中的第二个方程组中的两个方程中,未知数y的系数有什么特点?(互为相反数)根据等式的性质,如果把这两个方程的左边与左边相加,右边与右边相加,就可以消掉y,得到一个一元一次方程,进而求得二元一次方程组的解。解:由①+②,得4x=20解得x=5把x=5代入①,得10+3y=16解得5∴方程组的解是学生活动:比较用这种方法得到的x、y值是否与用代入法得到的相同。(相同)上面方程组的两个方程中,因为y的系数互为相反数,所以我们把两个方程相加,就消去了y。察一下,x的系数有何特点?(相等)方程①和方程②经过怎样的变化可以消去x?(相减)学生活动:观察、思考,尝试用①-②消元,解方程组,比较结果是否与用①+②得到的结果相同。(相同)归纳:两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。这种方法叫做加减消元法,简称加减法。提问:1、上面解二元一次方程组的方法,是用代入法简单,还是用加减法简单?(加减法)2、什么条件下可以用加减法进行消元?(某一个未知数的系数相等或互为相反数)3、什么条件下用加法、什么条件下用减法?(某个未知数的系数互为相反数时用加法,系数相等时用减法)教法说明这几个问题,可使学生明确使用加减法的条件,体会在某些条件下使用加减法的优越性。例1用加减法解方程组(1)(2)两个方程组未知数的系数有什么特点?((1)中y的系数互为相反数,(2)中y的系数相等)把这两个方程组怎样变化可以消去一个未知数?((1)用相加,(2)用相减)学生活动:回答问题后,独立完成例1,两个学生板演。解:略????1、检验一下,所得结果是否正确?2、方程组(1)用①+②可以消掉y吗?(可以)方程组(2)是用①-②,还是用②-①计算比较简单?(②-①简单)????方程组(3)把x=3代入①,y的值是多少?(4),是代入①计算简单还是代入②计算简单?(代入系数较简单的方程)练习:P1033.(l)(2)分组练习,学生板演。小结:用加减法解二元一次方程组的条件是某个未知数的系数绝对值相等。例2?解方程组-6y=33②(1)上面的方程组是否符合用加减法消元的条件?(不符合)(2)如何转化可使某个未知数系数的绝对值相等?(①×3或②×2)归纳:如果两个方程中,未知数系数的绝对值都不相等,可以在方程两边部乘以同一个适当的数,使两个方程中有一个未知数的系数绝对值相等,然后再加减消元。学生活动:独立解题,一名学生板演。学生活动:总结用加减法解二元一次方程组的步骤。①变形,使某个未知数的系数绝对值相等。②加减消元。③解一元一次方程。④代入得另一个未知数的值,从而得方程组的解。三、课堂练习练习:P102?1教法说明通过练习,使学生熟练地用加减法解二元一次方程组并能在练习中摸索运算技巧,培养能力。四、总结?1.用加减法解二元一次方程组的思想:消元2.用加减法解二元一次方程组的条件:某一未知数系数绝对值相等。3.用加减法解二元一次方程组的步骤:??①变形,使某个未知数的系数绝对值相等。??②加减消元。?③解一元一次方程。??④代入得另一个未知数的值,从而得方程组的解。五、作业???P1033.(3)(4)六、教学反思数学文化与数学教学2数学文化与数学教学介绍了数学文化的内涵,分析了数学文化的价值,提出在数学教学中要引入数学文化,提高数学素,并对如何在数学文化背景下进行数学教学进行了有益探索。数学文化数学素养数学娱乐数学教学一、数学文化的内涵“文化”一词在《辞海》中的解释是:人类在社会历史发展过程中所创造的物质财富和精神财富的总和。“数学作为一门学科,它应该是精神生活的产物,因此数学属于文化的范畴。数学作为一种文化,除了具有文化的某些普通特征外,还有其独有的特征,这是其区别于其他文化形态的主要方面。数学文化包括数学的思想精神、方法、观点、语言以及它们的形成和发展过程,同时它还包含数学家、数学史、数学美、数学教育、数学发展中的人文成分以及数学与社会的联系、数学与各种文化的关系,等等。”从而极大地丰富了人类文化,同时也推动了人类文化的发展,因此数学是人类文化有机的和最重要的组成部分。“数学文化”一词在1980年由美国学者怀尔德(R?Wilder)在《作为文化系统的数学》一书中提出,自20世纪80年代起,我国数学教育专家、学者开始对数学文化开展了大量研究,进入21世纪之后,数学教育就是数学文化的教育的观点得到认可,一个重要的标志是数学文化走进中小学课堂,渗入到实际数学教学中。教育部2003年颁布的《普通高中数学课程标准》(实验)中,有四个地方用大段文字从数学文化的角度来阐述观点,并且在标题中使用了“数学文化”一词。20世纪初的数学曾经存在着脱离社会文化的孤立主义倾向,并影响着中国。在中国数学教育界,曾有“数学=逻辑”的观念,学生们把数学看作“一种符号的游戏”。过去由于强调基础教育和应试教育,很多教师在教学时不注意数学文化的渗透,只是单调死板的对知识进行讲授和大量练习,使很多学生从小就在心里埋下了数学难、恐惧、厌烦的种子,久而久之,学生的意识里深深烙下了“数学没意思的烙印”。如今把数学放在文化的背景下加以教学,数学文化作为教材的组成部分,能帮助学生了解数学在人类文明发展中的作用,激发学习数学的兴趣,感受数学家治学的严谨,努力使学生在学习数学过程中受到文化感染,体会数学的文化品位,体察社会文化和数学文化之间的互动。二、数学文化的价值数学的工具作用是有目共睹的,但数学不仅仅是工具,它以自己独特的思维方式、独特的表现形式,与文学、艺术等一样,具有重要的文化价值。一方面,数学是人类思维训练的体操,经过长期的数学学习,能让学生养成缜密严格的思维习惯,培养学生深入细致的洞察和抽象概括能力、逻辑推理能力、严谨的思维分析和判断能力,从而提高大学生的思维素质。另一方面,数学对人的观念、品质、道德情操的形成具有十分重要的影响。它能培养人坚强的毅力、百折不饶的精神,使学生在今后的工作中,遇到问题不偏听偏信,思路清晰、条理分明、严格依据客观事实做出判断,并能有条不紊地处理头绪纷繁的各项工作。爱因斯坦曾说过,什么是教育?教育就是人走出校园许多年后,将所学的知识都忘记了,但还能够干出事业来,这就是教育的本质意义。曾有学生提出过“人为什么要学数学”这个问题。数学知识对很多人来说,也许一辈子都是用不上,但为什么数学还会成为全世界中小学的主要科目?并且是所花费的时间最多的科目?最重要的是数学体现的是人类的思维精华,能熏陶人的思维品质,培养人的情感态度,是为了提高全民族的数学文化素质。它会影响一个人的言行、思维方式等各个方面。数学教育不仅要使学生掌握数学知识,也要让学生获得极为重要的数学素养。三、数学文化背景下的数学教学如何在数学文化背景下提高数学教学质量,使学生能喜欢数学、学好数学,激发和调动学生学习数学的积极性是我们长期以来关注的问题。经过多年的探索,体会如下:1.注重数学史与数学知识的结合。以往学生认为数学枯燥、难学,一个重要原因是教材的内容从形式上是抽象和严密的,各章节的内容之间除了定义、定理的推导及证明,就是例题和练习,学生并知道这些知识的来龙去脉,不能引起他们的兴趣。因此,在教学中,教师要注重把一些重要的数学史知识介绍给学生,使学生掌握数学发展的基本规律,了解数学的基本思想,有助于学生对概念有一个整体认识。例如,在讲授极限概念时,可以先介绍战国时期公孙龙的一个命题:“一尺之棰,日取其半,万世不竭”,及刘徽的割圆术。刘徽的“割圆术”不仅计算出π的近似值,而且还提供了一种极限的思想,也反映出我国数学的悠久历史;在讲微积分之前,先介绍微积分的创立,同时配合图片介绍牛顿、莱布尼兹是如何在不同的背景、方法和形式上提出并创立微积分的,还可以进一步介绍微积分发现的优先权争论;在讲积分时,介绍积分号“∫”是莱布尼兹发明的,是英文字母sum的开头字母的缩写,数学上很多符号都是他发明的,并介绍在数学史上是先有定积分,然后才有不定积分的,等等,这些都会引起学生的兴趣。而且数学史上无数数学家的奋斗历程,也可以使学生树立正确的数学观,培养学生顽强的毅力、坚强的品格。2.让学数学成为娱乐。数学娱乐的理论是王青建教授提出的。数学大师陈省身、陶哲轩等也分别提出“数学好玩”和“去与数学玩”的观点,这些都反映出数学家享受数学乐趣的心情,反映了他们对数学研究和数学教育的态度。在教学过程中,教师应尽量用娱乐的态度、愉快的心情引入数学概念:张奠宙先生曾谈到一个老师,引用南宋诗人叶绍翁的“满园春色关不住,一枝红杏出墙来”的诗句,引入无界变量的概念,使学生学得兴趣盎然。我们在教学中也不妨引用李白的“孤帆远影碧空尽,唯见长江天际流”讲解极限的意境;通过思考阿基里斯悖论的故事,让学生理解“无限趋近……”的概念;在解题过程中,借用图形来说明时,可以用著名数学家华罗庚的论述:“数缺形时少直觉,形少数时难入微,形数结合百般好,割裂分家万事……”让学生感到数学也可以用文学形式来描述,使数学与文化交融到一起,把数学文化发挥得淋漓尽致。3.注意知识性、趣味性、思想性和应用性的统一。数学课常常被认为是枯燥难懂、脱离实际的。为了改变这种印象,唤起学生对数学的兴趣,让学生真正体会到数学是有用的,就要注意课程的趣味性和应用性。例如,讲数列时,从“兔子问题
本文标题:数学教学设计4篇
链接地址:https://www.777doc.com/doc-10306680 .html