您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 20192020学年沈阳市沈河区下学期七年级期末考试数学试卷解析
2019-2020学年沈阳市沈河区七年级第二学期期末数学试卷一、选择题1.计算a2•a4的结果是()A.a6B.a7C.a8D.a122.下列四个平面图形表示的图标中,属于轴对称图形的图标是()A.B.C.D.3.如图,平行线AB,CD被直线AE所截,∠1=75°,则∠2的度数是()A.75°B.95°C.105°D.115°4.三角形的两边分别为6,10,则第三边的长可能等于()A.3B.11C.16D.175.下列事件为确定事件的是()A.6张相同的小标签分别标有数字1~6,从中任意抽取一张,抽到3号签B.抛掷1枚质地均匀的硬币反面朝上C.射击运动员射击一次,命中靶心D.长度分别是4,6,8的三条线段能围成一个三角形6.如图,在△ABC中,∠B=60°,∠A=40°,分别以点B,C为圆心,大于BC长为半径画弧,两弧相交于点M,N,作直线MN,交AB于点P,连接CP,则∠ACP的度数为()A.40°B.30°C.20°D.10°7.计算(2m+3)(m﹣1)的结果是()A.2m2﹣m﹣3B.2m2+m﹣3C.2m2﹣m+3D.m2﹣m﹣38.下列说法中正确的有()①等角的余角相等;②两直线平行,同旁内角相等;③相等的角是对顶角;④同位角相等;⑤直角三角形中两锐角互余.A.1个B.2个C.3个D.4个9.如图,有三种规格的卡片,其中边长为a的正方形卡片1张,边长为b的正方形卡片4张,长、宽分别为a,b的长方形卡片m张.若使用这些卡片刚好可以拼成一个边长为a+2b的正方形,则m的值为()A.1B.2C.3D.410.如图,在△ABC中,AB=AC,∠A=112°,E,F,D分别是AB,AC,BC上的点,且BE=CD,BD=CF,则∠EDF的度数为()A.30°B.34°C.40°D.56°二、填空题(每小题3分,共18分)11.新型冠状肺炎病毒(COVID﹣19)的粒子,其直径在120~140纳米即0.00000012米~0.00000014米之间,数据0.00000012用科学记数法可以表示为.12.如图,一个转盘被分成6等分,自由转动转盘一次,停止后,指针落在阴影区域的概率是.13.如图所示,长方形的长和宽分别为8cm和6cm,剪去一个长为xcm(0<x<8)的小长方形(阴影部分)后,余下另个长方形的面积S(cm2)与x(cm)的关系式可表示为.14.一个角的补角等于这个角的余角的4倍,这个角是.15.如图,在△ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE垂直平分AB,交AB于点E,若DE=2cm,BD=3cm,则AC=cm.16.已知:如图,∠ABC=40°,点P是射线BC上一动点,把△ABP沿AP折叠,B点的对应点为点D,当直线AD垂直于BC时,∠ABD=°.三、解答题(第17小题6分,18,19小题各8分,共22分)17.计算:(﹣1)2020﹣(﹣3)﹣(7﹣π)0+(﹣)﹣1.18.计算:(3x+2y)(3x﹣2y)﹣3x(x+2y).19.先化简,再求值:[(x+y)(x﹣2y)﹣(x﹣2y)2]÷,其中x=﹣1,y=.四、(每小题8分,共16分)20.把下面的说理过程补充完整.已知:如图,∠1+∠2=180°,∠3=∠B.试判断∠AED与∠4的关系,并说明理由.结论:∠AED=∠4.理由:∵∠1+∠BDF=180°(),∠1+∠2=180°(已知)∴∠2=∠BDF.()∴EF∥AB.()∴∠3=∠ADE.()∵∠3=∠B,(已知)∴∠B=.∴DE∥BC.()∴∠AED=∠ACB.()又∵∠ACB=∠4,()∴∠AED=∠4.21.某校某次外出游学活动分为三类,因资源有限,七年级2班分配到25个名额,其中甲类4个、乙类11个、丙类10个,已知该班有50名学生,班主任准备50个签,其中甲类、乙类、丙类按名额设置和25个空签,采取抽签的方式来确定名额分配,请解决下列问题:(1)该班小明同学恰好抽到丙类名额的概率是;(2)该班小丽同学能有幸去参加游学活动的概率是;(3)后来,该班同学强烈呼吁名额太少,要求抽到甲类的概率要达到24%,则还要争取甲类名额多少个?五、(本题10分)22.如图,点A,B,C都在网格的格点上,每小方格是边长为1个单位长度的正方形.利用格点和直尺画图并填空:(1)画出格点△ABC关于直线MN轴对称的△A′B'C′;(2)画出△ABC中BC边上的高线AD;(3)若AB=5,点P是AB上一点则CP的最小值为.六、(本题10分)23.如图,点D是△ABC边AC上一点,AD=AB,过B点作BE∥AC,且BE=CD,连接CE交BD于点O,连接AO.(1)求证:AO平分∠BAC;(2)若∠ADB=70°,求∠ABE的度数.七、(本题12分)24.爷爷和他的孙子小明星期天一起去爬山.来到山脚下,小明让爷爷先上山,然后追赶爷爷,如图所示,两条线段分别表示小明和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(小明开始爬山时开始计时),请看图回答下列问题:(1)爷爷比小明先上了米,山顶离山脚米.(2)写出图中两条线段的交点表示的实际意义.(3)小明在爬山过程中何时与爷爷相距20米?八、(本题12分)25.已知∠ACD=60°,AC=DC,MN是过点A的直线,B、E两点在直线MN上,∠BCE=60°,CB=CE.(1)问题发现:如图1,BD和EA之间的数量关系为,BD、AB、BE之间的数量关系为;(2)拓展探究:当MN绕点A旋转到如图2位置时,BD、AB、BE之间满足怎样的数量关系?请写出你的猜想,并给予证明.(3)解决问题:当MN绕点A分别旋转到如图2和如图3位置时,若当时∠CAN=50°,连接AD,则∠ADB的大小为.参考答案一、选择题(下列各题的备选答案中,只有一个答案是正确的.每小题2分,共20分)1.计算a2•a4的结果是()A.a6B.a7C.a8D.a12【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即am•an=am+n计算即可.解:a2•a4=a2+4=a6,故选:A.2.下列四个平面图形表示的图标中,属于轴对称图形的图标是()A.B.C.D.【分析】根据轴对称图形的概念判断即可.解:A、不是轴对称图形;B、是轴对称图形;C、不是轴对称图形;D、不是轴对称图形;故选:B.3.如图,平行线AB,CD被直线AE所截,∠1=75°,则∠2的度数是()A.75°B.95°C.105°D.115°【分析】直接利用邻补角的定义结合平行线的性质得出答案.解:∵∠1=75°,∴∠3=105°,∵AB∥CD,∴∠2=∠3=105°.故选:C.4.三角形的两边分别为6,10,则第三边的长可能等于()A.3B.11C.16D.17【分析】设第三边的长为x,根据三角形三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得10﹣4<x<10+6,再解不等式即可.解:设第三边的长为x,根据三角形的三边关系得:10﹣6<x<10+6,即4<x<16,则第三边的长可能等于:11.故选:B.5.下列事件为确定事件的是()A.6张相同的小标签分别标有数字1~6,从中任意抽取一张,抽到3号签B.抛掷1枚质地均匀的硬币反面朝上C.射击运动员射击一次,命中靶心D.长度分别是4,6,8的三条线段能围成一个三角形【分析】直接利用确定事件以及随机事件的定义分析得出答案.解:A、6张相同的小标签分别标有数字1~6,从中任意抽取一张,抽到3号签,是随机事件,不合题意;B、抛掷1枚质地均匀的硬币反面朝上,是随机事件,不合题意;C、射击运动员射击一次,命中靶心,是随机事件,不合题意;D、长度分别是4,6,8的三条线段能围成一个三角形,是确定事件,符合题意;故选:D.6.如图,在△ABC中,∠B=60°,∠A=40°,分别以点B,C为圆心,大于BC长为半径画弧,两弧相交于点M,N,作直线MN,交AB于点P,连接CP,则∠ACP的度数为()A.40°B.30°C.20°D.10°【分析】由∠B=60°,∠A=40°,可得∠ACB=80°,根据作图过程可得,PN是BC的垂直平分线,进而可求∠ACP的度数.解:∵∠B=60°,∠A=40°,∴∠ACB=80°,根据作图过程可知:PN是BC的垂直平分线,∴PB=PC,∴∠B=∠PCB=60°,∴∠ACP=∠ACB﹣∠PCB=80°﹣60°=20°.故选:C.7.计算(2m+3)(m﹣1)的结果是()A.2m2﹣m﹣3B.2m2+m﹣3C.2m2﹣m+3D.m2﹣m﹣3【分析】原式利用多项式乘以多项式法则计算即可求出值.解:原式=2m2﹣2m+3m﹣3=2m2+m﹣3,故选:B.8.下列说法中正确的有()①等角的余角相等;②两直线平行,同旁内角相等;③相等的角是对顶角;④同位角相等;⑤直角三角形中两锐角互余.A.1个B.2个C.3个D.4个【分析】分别根据余角和补角的定义、平行线的性质及直角三角形的性质对各小题进行逐一分析即可.解:①等角的余角相等,故本小题正确;②两直线平行,同旁内角互补,故本小题错误;③不符合对顶角的定义,故本小题错误;④两直线平行,同位角相等,故本小题错误;⑤符合直角三角形的性质,故本小题正确.故选:B.9.如图,有三种规格的卡片,其中边长为a的正方形卡片1张,边长为b的正方形卡片4张,长、宽分别为a,b的长方形卡片m张.若使用这些卡片刚好可以拼成一个边长为a+2b的正方形,则m的值为()A.1B.2C.3D.4【分析】根据完全平方公式解答即可.解:∵(a+2b)2=a2+4ab+4b2,∴需要长、宽分别为a,b的长方形卡片4张.即m=4.故选:D.10.如图,在△ABC中,AB=AC,∠A=112°,E,F,D分别是AB,AC,BC上的点,且BE=CD,BD=CF,则∠EDF的度数为()A.30°B.34°C.40°D.56°【分析】由等腰三角形的性质和三角形内角和定理可求∠B=∠C=34°,由“SAS”可证△BDE≌△CFD,可得∠BED=∠CDF,∠BDE=∠CFD,由外角的性质可求解.解:∵AB=AC,∠A=112°,∴∠B=∠C=34°,在△BDE和△CFD中,,∴△BDE≌△CFD(SAS),∴∠BED=∠CDF,∠BDE=∠CFD,∴∠BED+∠BDE=∠CDF+∠CFD,∵∠BED+∠B=∠CDE=∠EDF+∠CDF,∴∠B=∠EDF=34°,故选:B.二、填空题(每小题3分,共18分)11.新型冠状肺炎病毒(COVID﹣19)的粒子,其直径在120~140纳米即0.00000012米~0.00000014米之间,数据0.00000012用科学记数法可以表示为1.2×10﹣7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.00000012=1.2×10﹣7,故答案是:1.2×10﹣7.12.如图,一个转盘被分成6等分,自由转动转盘一次,停止后,指针落在阴影区域的概率是.【分析】用阴影部分的份数除以总份数即可得.解:由图可知自由转动转盘一次,停止后,指针落在阴影区域的概率是=,故答案为:.13.如图所示,长方形的长和宽分别为8cm和6cm,剪去一个长为xcm(0<x<8)的小长方形(阴影部分)后,余下另个长方形的面积S(cm2)与x(cm)的关系式可表示为S=﹣6x+48.【分析】直接利用已知表示出新矩形的长,进而得出其面积.解:∵长方形的长和宽分别为8cm和6cm,剪去一个长为xcm(0<x<8)的小长方形(阴影部分)后,∴余下另一个长方形的面积S(cm2)与x(cm)的关系式可表示为:S=6(8﹣x).即S=﹣6x+48.故答案为:S=﹣6x+4814.一个角的补角等于这个角的余角的4倍,这个角是60°.【分析】设这个角为x,则这个角的补角=(180°﹣x),余角=(90°﹣x),根据题意可得出方程,解出即可.解:设这个角为x,则这个角的补角=(180°﹣x),余角=(
本文标题:20192020学年沈阳市沈河区下学期七年级期末考试数学试卷解析
链接地址:https://www.777doc.com/doc-10446374 .html