您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 理学 > 北大数学物理方法(A)-复变函数教案05复变积分2
Outline1ÊùECÈ©()ÔnÆêÆÔn{§|2007cSC.S.Wu1ÊùECÈ©()OutlineùÇ:1CauchyÈ©úªk.«CauchyÈ©úªÃ.«CauchyÈ©úª2)Û¼êpê)Û¼êpêúªõíØ3¹ëþÈ©Cauchy.È©¹ëþÈ©)Û5C.S.Wu1ÊùECÈ©()OutlineùÇ:1CauchyÈ©úªk.«CauchyÈ©úªÃ.«CauchyÈ©úª2)Û¼êpê)Û¼êpêúªõíØ3¹ëþÈ©Cauchy.È©¹ëþÈ©)Û5C.S.Wu1ÊùECÈ©()OutlineùÇ:1CauchyÈ©úªk.«CauchyÈ©úªÃ.«CauchyÈ©úª2)Û¼êpê)Û¼êpêúªõíØ3¹ëþÈ©Cauchy.È©¹ëþÈ©)Û5C.S.Wu1ÊùECÈ©()CauchyIntegralFormulaHigher-orderDerivativesof...IntegralasFunctionofParameterInvolvedReferencesÇÂÁ§5êÆÔn{6§§3.5—3.7ù&§5êÆÔn{6§§2.4nÎ!X1Á§5êÆÔn{6§§2.4C.S.Wu1ÊùECÈ©()CauchyIntegralFormulaHigher-orderDerivativesof...IntegralasFunctionofParameterInvolvedReferencesÇÂÁ§5êÆÔn{6§§3.5—3.7ù&§5êÆÔn{6§§2.4nÎ!X1Á§5êÆÔn{6§§2.4C.S.Wu1ÊùECÈ©()CauchyIntegralFormulaHigher-orderDerivativesof...IntegralasFunctionofParameterInvolvedReferencesÇÂÁ§5êÆÔn{6§§3.5—3.7ù&§5êÆÔn{6§§2.4nÎ!X1Á§5êÆÔn{6§§2.4C.S.Wu1ÊùECÈ©()CauchyIntegralFormulaHigher-orderDerivativesof...IntegralasFunctionofParameterInvolvedCauchyIntegralFormula:FiniteDomainCauchyIntegralFormula:InfiniteDomainùÇ:1CauchyÈ©úªk.«CauchyÈ©úªÃ.«CauchyÈ©úª2)Û¼êpê)Û¼êpêúªõíØ3¹ëþÈ©Cauchy.È©¹ëþÈ©)Û5C.S.Wu1ÊùECÈ©()CauchyIntegralFormulaHigher-orderDerivativesof...IntegralasFunctionofParameterInvolvedCauchyIntegralFormula:FiniteDomainCauchyIntegralFormula:InfiniteDomaink.«CauchyÈ©úªf(z)´«G¥ü)Û¼ê§G.C´©ã1w§aGS:§Kf(a)=12πiICf(z)z−adz٥ȩ´÷C3GS|z−a|r(±±|z−a|=r3GS)§KâEëÏ«Cauchy½n§kICf(z)z−adz=I|z−a|=rf(z)z−adzC.S.Wu1ÊùECÈ©()CauchyIntegralFormulaHigher-orderDerivativesof...IntegralasFunctionofParameterInvolvedCauchyIntegralFormula:FiniteDomainCauchyIntegralFormula:InfiniteDomaink.«CauchyÈ©úªf(z)´«G¥ü)Û¼ê§G.C´©ã1w§aGS:§Kf(a)=12πiICf(z)z−adz٥ȩ´÷C3GS|z−a|r(±±|z−a|=r3GS)§KâEëÏ«Cauchy½n§kICf(z)z−adz=I|z−a|=rf(z)z−adzC.S.Wu1ÊùECÈ©()CauchyIntegralFormulaHigher-orderDerivativesof...IntegralasFunctionofParameterInvolvedCauchyIntegralFormula:FiniteDomainCauchyIntegralFormula:InfiniteDomaink.«CauchyÈ©úªf(z)´«G¥ü)Û¼ê§G.C´©ã1w§aGS:§Kf(a)=12πiICf(z)z−adz٥ȩ´÷Cd(JArÃ'ICf(z)z−adz=limr→0I|z−a|=rf(z)z−adzC.S.Wu1ÊùECÈ©()CauchyIntegralFormulaHigher-orderDerivativesof...IntegralasFunctionofParameterInvolvedCauchyIntegralFormula:FiniteDomainCauchyIntegralFormula:InfiniteDomaink.«CauchyÈ©úªf(z)´«G¥ü)Û¼ê§G.C´©ã1w§aGS:§Kf(a)=12πiICf(z)z−adz٥ȩ´÷CÏlimz→a(z−a)f(z)z−a=f(a)§d1oùÚnI§Òy12πiICf(z)z−adz=f(a)C.S.Wu1ÊùECÈ©()CauchyIntegralFormulaHigher-orderDerivativesof...IntegralasFunctionofParameterInvolvedCauchyIntegralFormula:FiniteDomainCauchyIntegralFormula:InfiniteDomaink.«CauchyÈ©úªf(a)=12πiICf(z)z−adzAÏ/ªC±a%!R»±§z−a=Reiθdz=Reiθidθf(a)=12πZ2π0f a+Reiθdθþ½n)Û¼êf(z)3)Û«GS?¿:a¼êf(a)§u( uGS)±a%?±þ¼ê²þC.S.Wu1ÊùECÈ©()CauchyIntegralFormulaHigher-orderDerivativesof...IntegralasFunctionofParameterInvolvedCauchyIntegralFormula:FiniteDomainCauchyIntegralFormula:InfiniteDomaink.«CauchyÈ©úªf(a)=12πiICf(z)z−adzAÏ/ªC±a%!R»±§z−a=Reiθdz=Reiθidθf(a)=12πZ2π0f a+Reiθdθþ½n)Û¼êf(z)3)Û«GS?¿:a¼êf(a)§u( uGS)±a%?±þ¼ê²þC.S.Wu1ÊùECÈ©()CauchyIntegralFormulaHigher-orderDerivativesof...IntegralasFunctionofParameterInvolvedCauchyIntegralFormula:FiniteDomainCauchyIntegralFormula:InfiniteDomaink.«CauchyÈ©úªf(a)=12πiICf(z)z−adzAÏ/ªC±a%!R»±§z−a=Reiθdz=Reiθidθf(a)=12πZ2π0f a+Reiθdθþ½n)Û¼êf(z)3)Û«GS?¿:a¼êf(a)§u( uGS)±a%?±þ¼ê²þC.S.Wu1ÊùECÈ©()CauchyIntegralFormulaHigher-orderDerivativesof...IntegralasFunctionofParameterInvolvedCauchyIntegralFormula:FiniteDomainCauchyIntegralFormula:InfiniteDomaink.«CauchyÈ©úªf(a)=12πiICf(z)z−adzAÏ/ªC±a%!R»±§z−a=Reiθdz=Reiθidθf(a)=12πZ2π0f a+Reiθdθþ½n)Û¼êf(z)3)Û«GS?¿:a¼êf(a)§u( uGS)±a%?±þ¼ê²þC.S.Wu1ÊùECÈ©()CauchyIntegralFormulaHigher-orderDerivativesof...IntegralasFunctionofParameterInvolvedCauchyIntegralFormula:FiniteDomainCauchyIntegralFormula:InfiniteDomainùÇ:1CauchyÈ©úªk.«CauchyÈ©úªÃ.«CauchyÈ©úª2)Û¼êpê)Û¼êpêúªõíØ3¹ëþÈ©Cauchy.È©¹ëþÈ©)Û5C.S.Wu1ÊùECÈ©()CauchyIntegralFormulaHigher-orderDerivativesof...IntegralasFunctionofParameterInvolvedCauchyIntegralFormula:FiniteDomainCauchyIntegralFormula:InfiniteDomainÃ.«éuÃ.«§Ibf(z)3{ü4ÜCþ9C ()á:)ü)Û©aq/§y3O12πiICf(z)z−adzÙ¥aC :§È©´Cr´^§=7á:C.S.Wu1ÊùECÈ©()CauchyIntegralFormulaHigher-orderDerivativesof...IntegralasFunctionofParameterInvolvedCauchyIntegralFormula:FiniteDomainCauchyIntegralFormula:InfiniteDomainÃ.«éuÃ.«§Ibf(z)3{ü4ÜCþ9C ()á:)ü)Û©aq/§y3O12πiICf(z)z−adzÙ¥aC :§È©´Cr´^§=7á:C.S.Wu1ÊùECÈ©()CauchyIntegralFormulaHigher-orderDerivativesof...IntegralasFunctionofParameterInvolvedCauchyIntegralFormula:FiniteDomainCauchyIntegralFormula:InfiniteDomainÃ.«3C 2±:%§R»CR§ù§éuCÚCR¤EëÏ«§âk.«CauchyÈ©úª§k12πiICRf(z)z−adz+12πiICf(z)z−adz=f(a)Rv§d(J,RäNÃ'12πiICf(z)z−adz=f(a)−limR→∞12πiICRf(z)z−adzC.S.Wu1ÊùECÈ©()CauchyIntegralFormulaHigher-orderDerivativesof...IntegralasFunctio
本文标题:北大数学物理方法(A)-复变函数教案05复变积分2
链接地址:https://www.777doc.com/doc-10661747 .html