您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 理学 > 北大数学物理方法(A)-复变函数教案06无穷级数
Outline18ùá?êÔnÆêÆÔn{§|2007cSC.S.Wu18ùá?êOutlineùÇ:1Eê?êEê?ê•ÂñuÑýéÂñ?ê2¼ê?ê¼ê?êÂñ5¼ê?êÂñ5¹ëþ~È©)Û53?êAbel½nÂñÂñ»C.S.Wu18ùá?êOutlineùÇ:1Eê?êEê?ê•ÂñuÑýéÂñ?ê2¼ê?ê¼ê?êÂñ5¼ê?êÂñ5¹ëþ~È©)Û53?êAbel½nÂñÂñ»C.S.Wu18ùá?êOutlineùÇ:1Eê?êEê?ê•ÂñuÑýéÂñ?ê2¼ê?ê¼ê?êÂñ5¼ê?êÂñ5¹ëþ~È©)Û53?êAbel½nÂñÂñ»C.S.Wu18ùá?êComplexSeriesSeriesofComplexFunctionsPowerSeriesReferencesÇÂÁ§5êÆÔn{6§§4.1—4.5ù&§5êÆÔn{6§§3.1,3.2nÎ!X1Á§5êÆÔn{6§§3.1,3.2C.S.Wu18ùá?êComplexSeriesSeriesofComplexFunctionsPowerSeriesReferencesÇÂÁ§5êÆÔn{6§§4.1—4.5ù&§5êÆÔn{6§§3.1,3.2nÎ!X1Á§5êÆÔn{6§§3.1,3.2C.S.Wu18ùá?êComplexSeriesSeriesofComplexFunctionsPowerSeriesReferencesÇÂÁ§5êÆÔn{6§§4.1—4.5ù&§5êÆÔn{6§§3.1,3.2nÎ!X1Á§5êÆÔn{6§§3.1,3.2C.S.Wu18ùá?êComplexSeriesSeriesofComplexFunctionsPowerSeriesá?êá?ê§AO´?꧴)Û¼êL/ªNõмêÚAϼêÑ´^?ê½ÂEC¼ê?ênØÚ¢C¼ê'µVgÚ{ÉÓC.S.Wu18ùá?êComplexSeriesSeriesofComplexFunctionsPowerSeriesá?êá?ê§AO´?꧴)Û¼êL/ªNõмêÚAϼêÑ´^?ê½ÂEC¼ê?ênØÚ¢C¼ê'µVgÚ{ÉÓC.S.Wu18ùá?êComplexSeriesSeriesofComplexFunctionsPowerSeriesá?êá?ê§AO´?꧴)Û¼êL/ªNõмêÚAϼêÑ´^?ê½ÂEC¼ê?ênØÚ¢C¼ê'µVgÚ{ÉÓC.S.Wu18ùá?êComplexSeriesSeriesofComplexFunctionsPowerSeriesá?êá?ê§AO´?꧴)Û¼êL/ªNõмêÚAϼêÑ´^?ê½ÂEC¼ê?ênØÚ¢C¼ê'µVgÚ{ÉÓC.S.Wu18ùá?êComplexSeriesSeriesofComplexFunctionsPowerSeriesComplexSeries:Convergency&DivergencyAbsolutelyConvergencyùÇ:1Eê?êEê?ê•ÂñuÑýéÂñ?ê2¼ê?ê¼ê?êÂñ5¼ê?êÂñ5¹ëþ~È©)Û53?êAbel½nÂñÂñ»C.S.Wu18ùá?êComplexSeriesSeriesofComplexFunctionsPowerSeriesComplexSeries:Convergency&DivergencyAbsolutelyConvergencyEê?êu0+u1+u2+···+un+···=∞Pn=0uná?êÂñuÑXJ?êÜ©ÚSn=u0+u1+u2+···+un¤¤S{Sn}Âñ§K¡?êPunÂñ§S{Sn}4S=limn→∞Sn§¡?êPunÚ∞Pn=0un=limn→∞SnÄK§?êPun´uÑC.S.Wu18ùá?êComplexSeriesSeriesofComplexFunctionsPowerSeriesComplexSeries:Convergency&DivergencyAbsolutelyConvergencyEê?êu0+u1+u2+···+un+···=∞Pn=0uná?êÂñuÑXJ?êÜ©ÚSn=u0+u1+u2+···+un¤¤S{Sn}Âñ§K¡?êPunÂñ§S{Sn}4S=limn→∞Sn§¡?êPunÚ∞Pn=0un=limn→∞SnÄK§?êPun´uÑC.S.Wu18ùá?êComplexSeriesSeriesofComplexFunctionsPowerSeriesComplexSeries:Convergency&DivergencyAbsolutelyConvergencyEê?êu0+u1+u2+···+un+···=∞Pn=0uná?êÂñuÑXJ?êÜ©ÚSn=u0+u1+u2+···+un¤¤S{Sn}Âñ§K¡?êPunÂñ§S{Sn}4S=limn→∞Sn§¡?êPunÚ∞Pn=0un=limn→∞SnÄK§?êPun´uÑC.S.Wu18ùá?êComplexSeriesSeriesofComplexFunctionsPowerSeriesComplexSeries:Convergency&DivergencyAbsolutelyConvergencyEê?êu0+u1+u2+···+un+···=∞Pn=0uná?êÂñuÑXJ?êÜ©ÚSn=u0+u1+u2+···+un¤¤S{Sn}Âñ§K¡?êPunÂñ§S{Sn}4S=limn→∞Sn§¡?êPunÚ∞Pn=0un=limn→∞SnÄK§?êPun´uÑC.S.Wu18ùá?êComplexSeriesSeriesofComplexFunctionsPowerSeriesComplexSeries:Convergency&DivergencyAbsolutelyConvergency-un=αn+iβn,KÜ©ÚSSn=(α0+iβ0)+(α1+iβ1)+(α2+iβ2)+···+(αn+iβn)= α0+α1+α2+···+αn+i β0+β1+β2+···+βn Eê?êPunÂñ5du¢ê?êPαnÚPβnÂñ5 Eê?êPunduü¢ê?êPαnÚPβn∞Pn=0un=∞Pn=0αn+i∞Pn=0βnC.S.Wu18ùá?êComplexSeriesSeriesofComplexFunctionsPowerSeriesComplexSeries:Convergency&DivergencyAbsolutelyConvergency-un=αn+iβn,KÜ©ÚSSn=(α0+iβ0)+(α1+iβ1)+(α2+iβ2)+···+(αn+iβn)= α0+α1+α2+···+αn+i β0+β1+β2+···+βn Eê?êPunÂñ5du¢ê?êPαnÚPβnÂñ5 Eê?êPunduü¢ê?êPαnÚPβn∞Pn=0un=∞Pn=0αn+i∞Pn=0βnC.S.Wu18ùá?êComplexSeriesSeriesofComplexFunctionsPowerSeriesComplexSeries:Convergency&DivergencyAbsolutelyConvergency-un=αn+iβn,KÜ©ÚSSn=(α0+iβ0)+(α1+iβ1)+(α2+iβ2)+···+(αn+iβn)= α0+α1+α2+···+αn+i β0+β1+β2+···+βn Eê?êPunÂñ5du¢ê?êPαnÚPβnÂñ5 Eê?êPunduü¢ê?êPαnÚPβn∞Pn=0un=∞Pn=0αn+i∞Pn=0βnC.S.Wu18ùá?êComplexSeriesSeriesofComplexFunctionsPowerSeriesComplexSeries:Convergency&DivergencyAbsolutelyConvergency-un=αn+iβn,KÜ©ÚSSn=(α0+iβ0)+(α1+iβ1)+(α2+iβ2)+···+(αn+iβn)= α0+α1+α2+···+αn+i β0+β1+β2+···+βn Eê?êPunÂñ5du¢ê?êPαnÚPβnÂñ5 Eê?êPunduü¢ê?êPαnÚPβn∞Pn=0un=∞Pn=0αn+i∞Pn=0βnC.S.Wu18ùá?êComplexSeriesSeriesofComplexFunctionsPowerSeriesComplexSeries:Convergency&DivergencyAbsolutelyConvergency-un=αn+iβn,KÜ©ÚSSn=(α0+iβ0)+(α1+iβ1)+(α2+iβ2)+···+(αn+iβn)= α0+α1+α2+···+αn+i β0+β1+β2+···+βn Eê?êPunÂñ5du¢ê?êPαnÚPβnÂñ5 Eê?êPunduü¢ê?êPαnÚPβn∞Pn=0un=∞Pn=0αn+i∞Pn=0βnC.S.Wu18ùá?êComplexSeriesSeriesofComplexFunctionsPowerSeriesComplexSeries:Convergency&DivergencyAbsolutelyConvergency?êÂñ5§´^§Ü©ÚSÂñ5½Â©Ïd§âSÂñ¿^§±Ñ?êÂñ¿^Cauchy¿^SÂñCauchy¿^?¿½ε0§∃êN(ε)0§∀êp§k|zN+p−zN|ε?êÂñCauchy¿^?¿½ε0§∃ên§∀êp§k|un+1+un+2+···+un+p|εC.S.Wu18ùá?êComplexSeriesSeriesofComplexFunctionsPowerSeriesComplexSeries:Convergency&DivergencyAbsolutelyConvergency?êÂñ5§´^§Ü©ÚSÂñ5½Â©Ïd§âSÂñ¿^§±Ñ?êÂñ¿^Cauchy¿^SÂñCauchy¿^?¿½ε0§∃êN(ε)0§∀êp§k|zN+p−zN|ε?êÂñCauchy¿^?¿½ε0§∃ên§∀êp§k|un+1+un+2+···+un+p|εC.S.Wu18ùá?êComplexSeriesSeriesofComplexFunctionsPowerSeriesComplexSeries:Convergency&DivergencyAbsolutelyConvergency?êÂñ5§´^§Ü©ÚSÂñ5½Â©Ïd§âSÂñ¿^§±Ñ?êÂñ¿^Cauchy¿^SÂñCauchy¿^?¿½ε0§∃êN(ε)0§∀êp§k|zN+p−zN|ε?êÂñCauchy¿^?¿½ε0§∃ên§∀êp§k|un+1+un+2+···+un+p|εC.S.Wu18ùá?êComplexSeriesSeriesofComplexFunctionsPowerSeriesComplexSeries:Convergency&Divergen
本文标题:北大数学物理方法(A)-复变函数教案06无穷级数
链接地址:https://www.777doc.com/doc-10661749 .html