您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 理学 > 北大数学物理方法(A)-复变函数教案04复变积分1
Outline1oùECÈ©()ÔnÆêÆÔn{§|2007cSC.S.Wu1oùECÈ©()OutlineùÇ:1ECÈ©ECÈ©½ÂECÈ©Ä52Cauchy½nüëÏ«Cauchy½nؽȩ¼êEëÏ«Cauchy½n3ük^ÚnÚnµ·^u»Ã¡lÚnµ·^u»Ã¡lC.S.Wu1oùECÈ©()OutlineùÇ:1ECÈ©ECÈ©½ÂECÈ©Ä52Cauchy½nüëÏ«Cauchy½nؽȩ¼êEëÏ«Cauchy½n3ük^ÚnÚnµ·^u»Ã¡lÚnµ·^u»Ã¡lC.S.Wu1oùECÈ©()OutlineùÇ:1ECÈ©ECÈ©½ÂECÈ©Ä52Cauchy½nüëÏ«Cauchy½nؽȩ¼êEëÏ«Cauchy½n3ük^ÚnÚnµ·^u»Ã¡lÚnµ·^u»Ã¡lC.S.Wu1oùECÈ©()ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasReferencesÇÂÁ§5êÆÔn{6§§3.1—3.4ù&§5êÆÔn{6§§2.1—2.3nÎ!X1Á§5êÆÔn{6§§2.1—2.3C.S.Wu1oùECÈ©()ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasReferencesÇÂÁ§5êÆÔn{6§§3.1—3.4ù&§5êÆÔn{6§§2.1—2.3nÎ!X1Á§5êÆÔn{6§§2.1—2.3C.S.Wu1oùECÈ©()ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasReferencesÇÂÁ§5êÆÔn{6§§3.1—3.4ù&§5êÆÔn{6§§2.1—2.3nÎ!X1Á§5êÆÔn{6§§2.1—2.3C.S.Wu1oùECÈ©()ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalPropertiesùÇ:1ECÈ©ECÈ©½ÂECÈ©Ä52Cauchy½nüëÏ«Cauchy½nؽȩ¼êEëÏ«Cauchy½n3ük^ÚnÚnµ·^u»Ã¡lÚnµ·^u»Ã¡lC.S.Wu1oùECÈ©()ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalProperties½ÂµECÈ©´E겡þÈ©C´E²¡þ§¼êf(z)3Cþk½Â©òC?¿©n㧩:z0=A,z1,z2,···,zn=B§ζk´zk−1→zkãþ?¿:§ÚênPk=1f(ζk)(zk−zk−1)≡nPk=1f(ζk)Δzken→∞§¦max|Δzk|→0§dÚê43§ ζkÀÃ'§K¡d4¼êf(z)÷CÈ©§PZCf(z)dz=limmax|Δzk|→0nXk=1f(ζk)ΔzkC.S.Wu1oùECÈ©()ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalProperties½ÂµECÈ©´E겡þÈ©C´E²¡þ§¼êf(z)3Cþk½Â©òC?¿©n㧩:z0=A,z1,z2,···,zn=B§ζk´zk−1→zkãþ?¿:§ÚênPk=1f(ζk)(zk−zk−1)≡nPk=1f(ζk)Δzken→∞§¦max|Δzk|→0§dÚê43§ ζkÀÃ'§K¡d4¼êf(z)÷CÈ©§PZCf(z)dz=limmax|Δzk|→0nXk=1f(ζk)ΔzkC.S.Wu1oùECÈ©()ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalProperties½ÂµECÈ©´E겡þÈ©C´E²¡þ§¼êf(z)3Cþk½Â©òC?¿©n㧩:z0=A,z1,z2,···,zn=B§ζk´zk−1→zkãþ?¿:§ÚênPk=1f(ζk)(zk−zk−1)≡nPk=1f(ζk)Δzken→∞§¦max|Δzk|→0§dÚê43§ ζkÀÃ'§K¡d4¼êf(z)÷CÈ©§PZCf(z)dz=limmax|Δzk|→0nXk=1f(ζk)ΔzkC.S.Wu1oùECÈ©()ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalPropertiesECÈ©ECÈ©¢Sþ´ü¢CÈ©kS|ÜZCf(z)dz=ZC(u+iv)(dx+idy)=ZC(udx−vdy)+iZC(vdx+udy)Ïd§XJC´©ã1w§f(z)´CþëY¼ê§KECÈ©½3C.S.Wu1oùECÈ©()ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalPropertiesECÈ©ECÈ©¢Sþ´ü¢CÈ©kS|ÜZCf(z)dz=ZC(u+iv)(dx+idy)=ZC(udx−vdy)+iZC(vdx+udy)Ïd§XJC´©ã1w§f(z)´CþëY¼ê§KECÈ©½3C.S.Wu1oùECÈ©()ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalPropertiesùÇ:1ECÈ©ECÈ©½ÂECÈ©Ä52Cauchy½nüëÏ«Cauchy½nؽȩ¼êEëÏ«Cauchy½n3ük^ÚnÚnµ·^u»Ã¡lÚnµ·^u»Ã¡lC.S.Wu1oùECÈ©()ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalPropertiesECÈ©Ä5¶eÈ©ZCf1(z)dz,ZCf2(z)dz,···,ZCfn(z)dzÑ3§KZChf1(z)+f2(z)+···+fn(z)idz=ZCf1(z)dz+ZCf2(z)dz+···+ZCfn(z)dz·eC=C1+C2+···+Cn§KZC1f(z)dz+ZC2f(z)dz+···+ZCnf(z)dz=ZCf(z)dzC.S.Wu1oùECÈ©()ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalPropertiesECÈ©Ä5¶eÈ©ZCf1(z)dz,ZCf2(z)dz,···,ZCfn(z)dzÑ3§KZChf1(z)+f2(z)+···+fn(z)idz=ZCf1(z)dz+ZCf2(z)dz+···+ZCfn(z)dz·eC=C1+C2+···+Cn§KZC1f(z)dz+ZC2f(z)dz+···+ZCnf(z)dz=ZCf(z)dzC.S.Wu1oùECÈ©()ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalPropertiesECÈ©Ä5¸ZC−f(z)dz=−ZCf(z)dz§Ù¥C−L«C_¹ZCaf(z)dz=aZCf(z)dz§Ù¥a~êºZCf(z)dz≤ZC|f(z)||dz|C.S.Wu1oùECÈ©()ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalPropertiesECÈ©Ä5¸ZC−f(z)dz=−ZCf(z)dz§Ù¥C−L«C_¹ZCaf(z)dz=aZCf(z)dz§Ù¥a~êºZCf(z)dz≤ZC|f(z)||dz|C.S.Wu1oùECÈ©()ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalPropertiesECÈ©Ä5¸ZC−f(z)dz=−ZCf(z)dz§Ù¥C−L«C_¹ZCaf(z)dz=aZCf(z)dz§Ù¥a~êºZCf(z)dz≤ZC|f(z)||dz|C.S.Wu1oùECÈ©()ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalPropertiesECÈ©Ä5»ZCf(z)dz≤Ml§Ù¥Mf(z)3Cþþ.§lCÝC.S.Wu1oùECÈ©()ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalProperties~4.1¦ZCRezdz§C(i)÷¢¶d0→1§2²1uJ¶1→1+iC.S.Wu1oùECÈ©()ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalProperties~4.1¦ZCRezdz§C(i)÷¢¶d0→1§2²1uJ¶1→1+i(ii)÷J¶d0→i§2²1u¢¶i→1+iC.S.Wu1oùECÈ©()ComplexIntegrationCauchyIntegralTheoremsTwoUsefulLemmasComplexIntegration:DefinitionComplexIntegration:FundamentalProperties~4.
本文标题:北大数学物理方法(A)-复变函数教案04复变积分1
链接地址:https://www.777doc.com/doc-10661753 .html