您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 理学 > 北大数学物理方法(A)-复变函数教案12留数定理及其应用2
Outline1ù3ê½n9ÙA^()ÔnÆêÆÔn{§|2007cSC.S.Wu1ù3ê½n9ÙA^()OutlineùÇ:13ê½nO½È©(Y)¹n¼êáȩ¢¶þkÛ:/õ¼êÈ©C.S.Wu1ù3ê½n9ÙA^()EvaluationofDefiniteIntegrals(continued)ReferencesÇÂÁ§5êÆÔn{6§§7.4—7.6ù&§5êÆÔn{6§§4.2,4.3nÎ!X1Á§5êÆÔn{6§§5.3,5.4,5.5C.S.Wu1ù3ê½n9ÙA^()EvaluationofDefiniteIntegrals(continued)IntegralsInvolvingTrigonometricFunction...IntegrandwithSingularityatRealAxisIntegralsInvolvingMultivaluedFunctionsùÇ:13ê½nO½È©(Y)¹n¼êáȩ¢¶þkÛ:/õ¼êÈ©C.S.Wu1ù3ê½n9ÙA^()EvaluationofDefiniteIntegrals(continued)IntegralsInvolvingTrigonometricFunction...IntegrandwithSingularityatRealAxisIntegralsInvolvingMultivaluedFunctionsý£µJordanÚn30≤argz≤πS§|z|→∞Q(z)⇒0§KlimR→∞ZCRQ(z)eipzdz=0Ù¥p0§CR´±:%!R»þ=yz3CRþ§z=ReiθZCRQ(z)eipzdz=Zπ0Q(Reiθ)eipR(cosθ+isinθ)Reiθidθ≤Zπ0Q(Reiθ)e−pRsinθRdθC.S.Wu1ù3ê½n9ÙA^()EvaluationofDefiniteIntegrals(continued)IntegralsInvolvingTrigonometricFunction...IntegrandwithSingularityatRealAxisIntegralsInvolvingMultivaluedFunctionsý£µJordanÚn30≤argz≤πS§|z|→∞Q(z)⇒0§KlimR→∞ZCRQ(z)eipzdz=0Ù¥p0§CR´±:%!R»þ=yz3CRþ§z=ReiθZCRQ(z)eipzdz=Zπ0Q(Reiθ)eipR(cosθ+isinθ)Reiθidθ≤Zπ0Q(Reiθ)e−pRsinθRdθC.S.Wu1ù3ê½n9ÙA^()EvaluationofDefiniteIntegrals(continued)IntegralsInvolvingTrigonometricFunction...IntegrandwithSingularityatRealAxisIntegralsInvolvingMultivaluedFunctionsý£µJordanÚn30≤argz≤πS§|z|→∞Q(z)⇒0§KlimR→∞ZCRQ(z)eipzdz=0Ù¥p0§CR´±:%!R»þ=yz3CRþ§z=ReiθZCRQ(z)eipzdz=Zπ0Q(Reiθ)eipR(cosθ+isinθ)Reiθidθ≤Zπ0Q(Reiθ)e−pRsinθRdθC.S.Wu1ù3ê½n9ÙA^()EvaluationofDefiniteIntegrals(continued)IntegralsInvolvingTrigonometricFunction...IntegrandwithSingularityatRealAxisIntegralsInvolvingMultivaluedFunctionsJordanÚn(:)30≤argz≤πS§|z|→∞Q(z)⇒0§KlimR→∞ZCRQ(z)eipzdz=0=yz3CRþ§z=ReiθZCRQ(z)eipzdz≤Zπ0Q(Reiθ)e−pRsinθRdθ≤εRZπ0e−pRsinθdθ=2εRZπ/20e−pRsinθdθy²' 3u°(OsinθC.S.Wu1ù3ê½n9ÙA^()EvaluationofDefiniteIntegrals(continued)IntegralsInvolvingTrigonometricFunction...IntegrandwithSingularityatRealAxisIntegralsInvolvingMultivaluedFunctionsJordanÚn(:)30≤argz≤πS§|z|→∞Q(z)⇒0§KlimR→∞ZCRQ(z)eipzdz=0=yz3CRþ§z=ReiθZCRQ(z)eipzdz≤Zπ0Q(Reiθ)e−pRsinθRdθ≤εRZπ0e−pRsinθdθ=2εRZπ/20e−pRsinθdθy²' 3u°(OsinθC.S.Wu1ù3ê½n9ÙA^()EvaluationofDefiniteIntegrals(continued)IntegralsInvolvingTrigonometricFunction...IntegrandwithSingularityatRealAxisIntegralsInvolvingMultivaluedFunctionsJordanÚn(:)30≤argz≤πS§|z|→∞Q(z)⇒0§KlimR→∞ZCRQ(z)eipzdz=0=yz3CRþ§z=ReiθZCRQ(z)eipzdz≤Zπ0Q(Reiθ)e−pRsinθRdθ≤εRZπ0e−pRsinθdθ=2εRZπ/20e−pRsinθdθy²' 3u°(OsinθC.S.Wu1ù3ê½n9ÙA^()EvaluationofDefiniteIntegrals(continued)IntegralsInvolvingTrigonometricFunction...IntegrandwithSingularityatRealAxisIntegralsInvolvingMultivaluedFunctionsJordanÚn(:)30≤argz≤πS§|z|→∞Q(z)⇒0§KlimR→∞ZCRQ(z)eipzdz=0=yz3CRþ§z=ReiθZCRQ(z)eipzdz≤Zπ0Q(Reiθ)e−pRsinθRdθ≤εRZπ0e−pRsinθdθ=2εRZπ/20e−pRsinθdθy²' 3u°(OsinθC.S.Wu1ù3ê½n9ÙA^()EvaluationofDefiniteIntegrals(continued)IntegralsInvolvingTrigonometricFunction...IntegrandwithSingularityatRealAxisIntegralsInvolvingMultivaluedFunctions0≤θ≤π/2sinθ≥2θ/πZCRQ(z)eipzdz≤2εRZπ/20e−pRsinθdθ≤2εRZπ/20e−pR·2θ/πdθ=2εR·π2pR 1−e−pR=επp 1−e−pR→0∴limR→∞ZCRQ(z)eipzdz=0C.S.Wu1ù3ê½n9ÙA^()EvaluationofDefiniteIntegrals(continued)IntegralsInvolvingTrigonometricFunction...IntegrandwithSingularityatRealAxisIntegralsInvolvingMultivaluedFunctions0≤θ≤π/2sinθ≥2θ/πZCRQ(z)eipzdz≤2εRZπ/20e−pRsinθdθ≤2εRZπ/20e−pR·2θ/πdθ=2εR·π2pR 1−e−pR=επp 1−e−pR→0∴limR→∞ZCRQ(z)eipzdz=0C.S.Wu1ù3ê½n9ÙA^()EvaluationofDefiniteIntegrals(continued)IntegralsInvolvingTrigonometricFunction...IntegrandwithSingularityatRealAxisIntegralsInvolvingMultivaluedFunctions0≤θ≤π/2sinθ≥2θ/πZCRQ(z)eipzdz≤2εRZπ/20e−pRsinθdθ≤2εRZπ/20e−pR·2θ/πdθ=2εR·π2pR 1−e−pR=επp 1−e−pR→0∴limR→∞ZCRQ(z)eipzdz=0C.S.Wu1ù3ê½n9ÙA^()EvaluationofDefiniteIntegrals(continued)IntegralsInvolvingTrigonometricFunction...IntegrandwithSingularityatRealAxisIntegralsInvolvingMultivaluedFunctions0≤θ≤π/2sinθ≥2θ/πZCRQ(z)eipzdz≤2εRZπ/20e−pRsinθdθ≤2εRZπ/20e−pR·2θ/πdθ=2εR·π2pR 1−e−pR=επp 1−e−pR→0∴limR→∞ZCRQ(z)eipzdz=0C.S.Wu1ù3ê½n9ÙA^()EvaluationofDefiniteIntegrals(continued)IntegralsInvolvingTrigonometricFunction...IntegrandwithSingularityatRealAxisIntegralsInvolvingMultivaluedFunctions0≤θ≤π/2sinθ≥2θ/πZCRQ(z)eipzdz≤2εRZπ/20e−pRsinθdθ≤2εRZπ/20e−pR·2θ/πdθ=2εR·π2pR 1−e−pR=επp 1−e−pR→0∴limR→∞ZCRQ(z)eipzdz=0C.S.Wu1ù3ê½n9ÙA^()EvaluationofDefiniteIntegrals(continued)IntegralsInvolvingTrigonometricFunction...IntegrandwithSingularityatRealAxisIntegralsInvolvingMultivaluedFunctions0≤θ≤π/2sinθ≥2θ/πZCRQ(z)eipzdz≤2εRZπ/20e−pRsinθdθ≤2εRZπ/20e−pR·2θ/πdθ=2εR·π2pR 1−e−pR=επp 1−e−pR→0∴limR→∞ZCRQ(z)eipzdz=0C.S.Wu1ù3ê½n9ÙA^()EvaluationofDefiniteIntegrals(continued)IntegralsInvolvingTrigonometricFunction...IntegrandwithSingularityatRealAxisIntegralsInvolvingMultivaluedFunctions¹n¼êáȩùaÈ©
本文标题:北大数学物理方法(A)-复变函数教案12留数定理及其应用2
链接地址:https://www.777doc.com/doc-10661758 .html