您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 理学 > 北大数学物理方法(A)-复变函数教案13Γ函数与 B函数
Outline1nùΓ¼êB¼êÔnÆêÆÔn{§|2007cSC.S.Wu1nùΓ¼êB¼êOutlineùÇ:1Γ¼êΓ¼ê½ÂΓ¼ê)Û5Γ¼êÄ52B¼êB¼ê½ÂB¼êΓ¼êk'Γ¼êüúªy²C.S.Wu1nùΓ¼êB¼êOutlineùÇ:1Γ¼êΓ¼ê½ÂΓ¼ê)Û5Γ¼êÄ52B¼êB¼ê½ÂB¼êΓ¼êk'Γ¼êüúªy²C.S.Wu1nùΓ¼êB¼êGammaFunctionBetaFunctionReferencesÇÂÁ§5êÆÔn{6§§8.1—8.4ù&§5êÆÔn{6§N¹13nÎ!X1Á§5êÆÔn{6§§4.3,4.4C.S.Wu1nùΓ¼êB¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesùÇ:1Γ¼êΓ¼ê½ÂΓ¼ê)Û5Γ¼êÄ52B¼êB¼ê½ÂB¼êΓ¼êk'Γ¼êüúªy²C.S.Wu1nùΓ¼êB¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesΓ¼ê~^½ÂΓ(z)=Z∞0e−ttz−1dtRez0٥ȩCþtATn)argt=0¡1aEulerÈ© ù´~È©µQ´×È©(3t=0à)§q´Ã¡È©C.S.Wu1nùΓ¼êB¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesΓ¼ê~^½ÂΓ(z)=Z∞0e−ttz−1dtRez0٥ȩCþtATn)argt=0¡1aEulerÈ© ù´~È©µQ´×È©(3t=0à)§q´Ã¡È©C.S.Wu1nùΓ¼êB¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesΓ¼ê~^½ÂΓ(z)=Z∞0e−ttz−1dtRez0٥ȩCþtATn)argt=0¡1aEulerÈ© ù´~È©µQ´×È©(3t=0à)§q´Ã¡È©C.S.Wu1nùΓ¼êB¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesùÇ:1Γ¼êΓ¼ê½ÂΓ¼ê)Û5Γ¼êÄ52B¼êB¼ê½ÂB¼êΓ¼êk'Γ¼êüúªy²C.S.Wu1nùΓ¼êB¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:Properties?ØΓ¼ê)Û5§IòÈ©¤üÜ©Γ(z)=Z∞0e−ttz−1dt=Z10e−ttz−1dt|{z}γ(z,1)+Z∞1e−ttz−1dt|{z}Γ(z,1)kkw1Ü©Γ(z,1)=Z∞1e−ttz−1dtC.S.Wu1nùΓ¼êB¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:Properties?ØΓ¼ê)Û5§IòÈ©¤üÜ©Γ(z)=Z∞0e−ttz−1dt=Z10e−ttz−1dt|{z}γ(z,1)+Z∞1e−ttz−1dt|{z}Γ(z,1)kkw1Ü©Γ(z,1)=Z∞1e−ttz−1dtC.S.Wu1nùΓ¼êB¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesΓ(z,1)=Z∞1e−ttz−1dt)Û5t≥1§È¼êe−ttz−1´tëY¼êz¼ê§3²¡)Ûy²§L)Û¼ê§ÒIy²È©Âñet=∞Xn=0tnn!=⇒ettNN!e−tN!tN∀N∈NC.S.Wu1nùΓ¼êB¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesΓ(z,1)=Z∞1e−ttz−1dt)Û5t≥1§È¼êe−ttz−1´tëY¼êz¼ê§3²¡)Ûy²§L)Û¼ê§ÒIy²È©Âñet=∞Xn=0tnn!=⇒ettNN!e−tN!tN∀N∈NC.S.Wu1nùΓ¼êB¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesΓ(z,1)=Z∞1e−ttz−1dt)Û5t≥1§È¼êe−ttz−1´tëY¼êz¼ê§3²¡)Ûy²§L)Û¼ê§ÒIy²È©Âñet=∞Xn=0tnn!=⇒ettNN!e−tN!tN∀N∈NC.S.Wu1nùΓ¼êB¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesΓ(z,1)=Z∞1e−ttz−1dt)Û5t≥1§È¼êe−ttz−1´tëY¼êz¼ê§3²¡)Ûy²§L)Û¼ê§ÒIy²È©Âñet=∞Xn=0tnn!=⇒ettNN!e−tN!tN∀N∈NC.S.Wu1nùΓ¼êB¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesΓ(z,1)=Z∞1e−ttz−1dt)Û5t≥1§È¼êe−ttz−1´tëY¼êz¼ê§3²¡)Ûy²§L)Û¼ê§ÒIy²È©Âñet=∞Xn=0tnn!=⇒ettNN!e−tN!tN∀N∈NC.S.Wu1nùΓ¼êB¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesΓ(z,1)=Z∞1e−ttz−1dt)Û5éuz²¡þ?4«(«S?¿:§þkRezx0)e−ttz−1N!·tx0−N−1ÀJvN(¦Nx0)È©Z∞1tx0−N−1dtÒÂñΓ(z,1)3z²¡S4ÂñÏdΓ(z,1)3²¡)ÛC.S.Wu1nùΓ¼êB¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesΓ(z,1)=Z∞1e−ttz−1dt)Û5éuz²¡þ?4«(«S?¿:§þkRezx0)e−ttz−1N!·tx0−N−1ÀJvN(¦Nx0)È©Z∞1tx0−N−1dtÒÂñΓ(z,1)3z²¡S4ÂñÏdΓ(z,1)3²¡)ÛC.S.Wu1nùΓ¼êB¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesΓ(z,1)=Z∞1e−ttz−1dt)Û5éuz²¡þ?4«(«S?¿:§þkRezx0)e−ttz−1N!·tx0−N−1ÀJvN(¦Nx0)È©Z∞1tx0−N−1dtÒÂñΓ(z,1)3z²¡S4ÂñÏdΓ(z,1)3²¡)ÛC.S.Wu1nùΓ¼êB¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:PropertiesΓ(z,1)=Z∞1e−ttz−1dt)Û5éuz²¡þ?4«(«S?¿:§þkRezx0)e−ttz−1N!·tx0−N−1ÀJvN(¦Nx0)È©Z∞1tx0−N−1dtÒÂñΓ(z,1)3z²¡S4ÂñÏdΓ(z,1)3²¡)ÛC.S.Wu1nùΓ¼êB¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:Propertiesγ(z,1)=Z10e−ttz−1dt)Û5' ´y²§Âñ5Ïe−ttz−1=e−ttx−1(x=Rez)¤±éuz²¡þm²¡?«§kRez≥δ0e−ttz−1≤tδ−1Z10tδ−1dtÂñγ(z,1)3z²¡þm²¡S4ÂñÏdγ(z,1)3m²¡)ÛC.S.Wu1nùΓ¼êB¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:Propertiesγ(z,1)=Z10e−ttz−1dt)Û5' ´y²§Âñ5Ïe−ttz−1=e−ttx−1(x=Rez)¤±éuz²¡þm²¡?«§kRez≥δ0e−ttz−1≤tδ−1Z10tδ−1dtÂñγ(z,1)3z²¡þm²¡S4ÂñÏdγ(z,1)3m²¡)ÛC.S.Wu1nùΓ¼êB¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:Propertiesγ(z,1)=Z10e−ttz−1dt)Û5' ´y²§Âñ5Ïe−ttz−1=e−ttx−1(x=Rez)¤±éuz²¡þm²¡?«§kRez≥δ0e−ttz−1≤tδ−1Z10tδ−1dtÂñγ(z,1)3z²¡þm²¡S4ÂñÏdγ(z,1)3m²¡)ÛC.S.Wu1nùΓ¼êB¼êGammaFunctionBetaFunctionGammaFunction:DefinitionGammaFunction:AnalyticityGammaFunction:Propertiesγ(z,1)=Z10e−ttz−1dt)Û5' ´y²§Âñ5Ïe−ttz−1=e−ttx−1(x=Rez)¤±éuz²¡þm²¡?«§kRez≥δ0e−ttz−1≤tδ−1Z10tδ−1dtÂñγ(z,1)3z²¡þm²¡S4ÂñÏdγ(z,1)3m²¡)ÛC.S.Wu1nùΓ¼êB¼êGammaFunctionBetaFunctionGam
本文标题:北大数学物理方法(A)-复变函数教案13Γ函数与 B函数
链接地址:https://www.777doc.com/doc-10661759 .html