您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 理学 > 北大数学物理方法(A)-复变函数教案14Laplace变换
Outline1oùLaplaceCÔnÆ2007cSC.S.Wu1oùLaplaceCOutlineùÇ:1LaplaceC½ÂLaplaceCÄ52LaplaceCüLaplaceC¼ê7^LaplaceCüÊHüúªC.S.Wu1oùLaplaceCOutlineùÇ:1LaplaceC½ÂLaplaceCÄ52LaplaceCüLaplaceC¼ê7^LaplaceCüÊHüúªC.S.Wu1oùLaplaceCLaplaceTransformInverseLaplaceTransformReferencesÇÂÁ§5êÆÔn{6§19Ùù&§5êÆÔn{6§16ÙnÎ!X1Á§5êÆÔn{6§§6.1,6.2,6.3C.S.Wu1oùLaplaceCLaplaceTransformInverseLaplaceTransformDefinitionofLaplaceTransformPropertiesofLaplaceTransformLaplaceC({¡.¼C)´~^«È©C©3êÆ!Ôn9ó§Æ¥k2A^!0LaplaceC½Â9ÙÄ5C.S.Wu1oùLaplaceCLaplaceTransformInverseLaplaceTransformDefinitionofLaplaceTransformPropertiesofLaplaceTransformLaplaceC({¡.¼C)´~^«È©C©3êÆ!Ôn9ó§Æ¥k2A^!0LaplaceC½Â9ÙÄ5C.S.Wu1oùLaplaceCLaplaceTransformInverseLaplaceTransformDefinitionofLaplaceTransformPropertiesofLaplaceTransformùÇ:1LaplaceC½ÂLaplaceCÄ52LaplaceCüLaplaceC¼ê7^LaplaceCüÊHüúªC.S.Wu1oùLaplaceCLaplaceTransformInverseLaplaceTransformDefinitionofLaplaceTransformPropertiesofLaplaceTransformDefinitionLaplaceC´«È©C§§rf(t)CF(p)F(p)=Z∞0e−ptf(t)dtùpt´¢ê§p´Eê§p=s+iσF(p)¡f(t)Laplaceª§{¡.¼ªe−pt´LaplaceCØC.S.Wu1oùLaplaceCLaplaceTransformInverseLaplaceTransformDefinitionofLaplaceTransformPropertiesofLaplaceTransformDefinitionLaplaceC´«È©C§§rf(t)CF(p)F(p)=Z∞0e−ptf(t)dtùpt´¢ê§p´Eê§p=s+iσF(p)¡f(t)Laplaceª§{¡.¼ªe−pt´LaplaceCØC.S.Wu1oùLaplaceCLaplaceTransformInverseLaplaceTransformDefinitionofLaplaceTransformPropertiesofLaplaceTransformDefinitionLaplaceC´«È©C§§rf(t)CF(p)F(p)=Z∞0e−ptf(t)dtùpt´¢ê§p´Eê§p=s+iσF(p)¡f(t)Laplaceª§{¡.¼ªe−pt´LaplaceCØC.S.Wu1oùLaplaceCLaplaceTransformInverseLaplaceTransformDefinitionofLaplaceTransformPropertiesofLaplaceTransformDefinitionLaplaceC´«È©C§§rf(t)CF(p)F(p)=Z∞0e−ptf(t)dtùpt´¢ê§p´Eê§p=s+iσF(p)¡f(t)Laplaceª§{¡.¼ªe−pt´LaplaceCØC.S.Wu1oùLaplaceCLaplaceTransformInverseLaplaceTransformDefinitionofLaplaceTransformPropertiesofLaplaceTransformDefinitionLaplaceC´«È©C§§rf(t)CF(p)F(p)=Z∞0e−ptf(t)dt¶¡µf(t)LaplaceC¼êF(p)LaplaceC¼ê{PÒF(p)=L{f(t)}½F(p):f(t)f(t)=L−1{F(p)}½f(t);F(p)C.S.Wu1oùLaplaceCLaplaceTransformInverseLaplaceTransformDefinitionofLaplaceTransformPropertiesofLaplaceTransformDefinitionLaplaceC´«È©C§§rf(t)CF(p)F(p)=Z∞0e−ptf(t)dt¶¡µf(t)LaplaceC¼êF(p)LaplaceC¼ê{PÒF(p)=L{f(t)}½F(p):f(t)f(t)=L−1{F(p)}½f(t);F(p)C.S.Wu1oùLaplaceCLaplaceTransformInverseLaplaceTransformDefinitionofLaplaceTransformPropertiesofLaplaceTransformDefinitionLaplaceC´«È©C§§rf(t)CF(p)F(p)=Z∞0e−ptf(t)dt¶¡µf(t)LaplaceC¼êF(p)LaplaceC¼ê{PÒF(p)=L{f(t)}½F(p):f(t)f(t)=L−1{F(p)}½f(t);F(p)C.S.Wu1oùLaplaceCLaplaceTransformInverseLaplaceTransformDefinitionofLaplaceTransformPropertiesofLaplaceTransform~14.1¼êf(t)=1Laplaceª1;Z∞0e−ptdt=−1pe−pt∞0=1pRep0ùp^Rep0´yÈ©Âñ§½ö`§´LaplaceC3^C.S.Wu1oùLaplaceCLaplaceTransformInverseLaplaceTransformDefinitionofLaplaceTransformPropertiesofLaplaceTransform~14.1¼êf(t)=1Laplaceª1;Z∞0e−ptdt=−1pe−pt∞0=1pRep0ùp^Rep0´yÈ©Âñ§½ö`§´LaplaceC3^C.S.Wu1oùLaplaceCLaplaceTransformInverseLaplaceTransformDefinitionofLaplaceTransformPropertiesofLaplaceTransform~14.2¼êf(t)=eαtLaplaceªeαt;Z∞0e−pt·eαtdt=−1pe−(p−α)t∞0=1p−αRepReαùp^RepReαÓ´yÈ©Âñ§=LaplaceC3C.S.Wu1oùLaplaceCLaplaceTransformInverseLaplaceTransformDefinitionofLaplaceTransformPropertiesofLaplaceTransform~14.2¼êf(t)=eαtLaplaceªeαt;Z∞0e−pt·eαtdt=−1pe−(p−α)t∞0=1p−αRepReαùp^RepReαÓ´yÈ©Âñ§=LaplaceC3C.S.Wu1oùLaplaceCLaplaceTransformInverseLaplaceTransformDefinitionofLaplaceTransformPropertiesofLaplaceTransform?Øl~14.1Ú~14.2±wѧduLaplaceCØ´e−pt§¤±éu2¼êf(t)§Ù.¼ªÑ3$t→∞,f(t)→∞§f(t).¼ªU3LaplaceC3^Ò´È©Z∞0e−ptf(t)dtÂñ^C.S.Wu1oùLaplaceCLaplaceTransformInverseLaplaceTransformDefinitionofLaplaceTransformPropertiesofLaplaceTransform?Øl~14.1Ú~14.2±wѧduLaplaceCØ´e−pt§¤±éu2¼êf(t)§Ù.¼ªÑ3$t→∞,f(t)→∞§f(t).¼ªU3LaplaceC3^Ò´È©Z∞0e−ptf(t)dtÂñ^C.S.Wu1oùLaplaceCLaplaceTransformInverseLaplaceTransformDefinitionofLaplaceTransformPropertiesofLaplaceTransform?Øl~14.1Ú~14.2±wѧduLaplaceCØ´e−pt§¤±éu2¼êf(t)§Ù.¼ªÑ3$t→∞,f(t)→∞§f(t).¼ªU3LaplaceC3^Ò´È©Z∞0e−ptf(t)dtÂñ^C.S.Wu1oùLaplaceCLaplaceTransformInverseLaplaceTransformDefinitionofLaplaceTransformPropertiesofLaplaceTransform?Øl~14.1Ú~14.2±wѧduLaplaceCØ´e−pt§¤±éu2¼êf(t)§Ù.¼ªÑ3$t→∞,f(t)→∞§f(t).¼ªU3LaplaceC3^Ò´È©Z∞0e−ptf(t)dtÂñ^C.S.Wu1oùLaplaceCLaplaceTransformInverseLaplaceTransformDefinitionofLaplaceTransformPropertiesofLaplaceTransformLaplaceC3¿©^3ýõê¢S¯K¥§f(t)ÑU÷v1f(t)3«m0≤t∞¥Ø1amä: Ñ´ëY§ këYê§3?Ûk«m¥ù«mä:ê8´k2f(t)kkOê§=3êM09s0≥0§¦éu?Ût(¢Sþ§éuvt)§|f(t)|Mes0tXJs03{§§½¿Ø§Ï's0?ÛêÎܦs0e(.¡ÂñîI§Ps0C.S.Wu1oùLaplaceCLaplaceTransformInverseLaplaceTransformDefinitionofLaplaceTransformPropertiesofLaplaceTransformLaplaceC3¿©^3ýõê¢S¯K¥§f(t)ÑU÷v1f(t)3«m0≤t∞¥Ø1amä: Ñ´ëY§ këYê§3?Ûk«m¥ù«mä:ê8´k2f(t)kkOê§=3êM09s0≥0§¦éu?Ût(
本文标题:北大数学物理方法(A)-复变函数教案14Laplace变换
链接地址:https://www.777doc.com/doc-10661760 .html