您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 理学 > 北大数学物理方法(A)-数学物理方程教案15Green函数1
Outline1ÊùGreen¼ê()ÔnÆêÆÔn{§|2007cSC.S.Wu1ÊùGreen¼ê()OutlineùÇ:1Green¼êVgÃ.mU\nk.mSGreen¼ê½Â2½¯KGreen¼ê½¯KGreen¼ê5Green¼êé¡5½¯KGreen¼ê){3nÃ.mHelmholtz§Green¼ê){µ¦)){µFourierCC.S.Wu1ÊùGreen¼ê()OutlineùÇ:1Green¼êVgÃ.mU\nk.mSGreen¼ê½Â2½¯KGreen¼ê½¯KGreen¼ê5Green¼êé¡5½¯KGreen¼ê){3nÃ.mHelmholtz§Green¼ê){µ¦)){µFourierCC.S.Wu1ÊùGreen¼ê()OutlineùÇ:1Green¼êVgÃ.mU\nk.mSGreen¼ê½Â2½¯KGreen¼ê½¯KGreen¼ê5Green¼êé¡5½¯KGreen¼ê){3nÃ.mHelmholtz§Green¼ê){µ¦)){µFourierCC.S.Wu1ÊùGreen¼ê()ConceptofGreenFunctionsGreenFunctionsinTime-IndependentProblemsGreenFtnsof3DHolmholtzeq.ReferencesÇÂÁ§5êÆÔn{6§§20.1—20.3ù&§5êÆÔn{6§§12.1nÎ!X1Á§5êÆÔn{6§§14.1,14.2,14.3C.S.Wu1ÊùGreen¼ê()ConceptofGreenFunctionsGreenFunctionsinTime-IndependentProblemsGreenFtnsof3DHolmholtzeq.SuperpositionPrinciplesinInfiniteSpaceGreenFunctionsinFiniteSpace:DefinitionùÇ:1Green¼êVgÃ.mU\nk.mSGreen¼ê½Â2½¯KGreen¼ê½¯KGreen¼ê5Green¼êé¡5½¯KGreen¼ê){3nÃ.mHelmholtz§Green¼ê){µ¦)){µFourierCC.S.Wu1ÊùGreen¼ê()ConceptofGreenFunctionsGreenFunctionsinTime-IndependentProblemsGreenFtnsof3DHolmholtzeq.SuperpositionPrinciplesinInfiniteSpaceGreenFunctionsinFiniteSpace:DefinitionkÞ·|~fÃ.m¥k½Ö©Ù§ÖÝρ(r)3Ir0=(x0,y0,z0)Ndr0Sþ=ρ(r0)dr0§§3mr=(x,y,z):³´14πε0ρ(r0)|r−r0|dr0â³U\n§rm¥ÜÖ)³U\å5§Ò3r:o³φ(r)=14πε0ZZZρ(r0)|r−r0|dr0C.S.Wu1ÊùGreen¼ê()ConceptofGreenFunctionsGreenFunctionsinTime-IndependentProblemsGreenFtnsof3DHolmholtzeq.SuperpositionPrinciplesinInfiniteSpaceGreenFunctionsinFiniteSpace:DefinitionkÞ·|~fÃ.m¥k½Ö©Ù§ÖÝρ(r)3Ir0=(x0,y0,z0)Ndr0Sþ=ρ(r0)dr0§§3mr=(x,y,z):³´14πε0ρ(r0)|r−r0|dr0â³U\n§rm¥ÜÖ)³U\å5§Ò3r:o³φ(r)=14πε0ZZZρ(r0)|r−r0|dr0C.S.Wu1ÊùGreen¼ê()ConceptofGreenFunctionsGreenFunctionsinTime-IndependentProblemsGreenFtnsof3DHolmholtzeq.SuperpositionPrinciplesinInfiniteSpaceGreenFunctionsinFiniteSpace:DefinitionkÞ·|~fÃ.m¥k½Ö©Ù§ÖÝρ(r)3Ir0=(x0,y0,z0)Ndr0Sþ=ρ(r0)dr0§§3mr=(x,y,z):³´14πε0ρ(r0)|r−r0|dr0â³U\n§rm¥ÜÖ)³U\å5§Ò3r:o³φ(r)=14πε0ZZZρ(r0)|r−r0|dr0C.S.Wu1ÊùGreen¼ê()ConceptofGreenFunctionsGreenFunctionsinTime-IndependentProblemsGreenFtnsof3DHolmholtzeq.SuperpositionPrinciplesinInfiniteSpaceGreenFunctionsinFiniteSpace:Definitionù(J`²µü :Ö3m³©Ù§@o§ÏLÖ©U\§Ò±?¿Ö©Ù³ù«{ØL´|^ ©§55C.S.Wu1ÊùGreen¼ê()ConceptofGreenFunctionsGreenFunctionsinTime-IndependentProblemsGreenFtnsof3DHolmholtzeq.SuperpositionPrinciplesinInfiniteSpaceGreenFunctionsinFiniteSpace:Definitionù(J`²µü :Ö3m³©Ù§@o§ÏLÖ©U\§Ò±?¿Ö©Ù³ù«{ØL´|^ ©§55C.S.Wu1ÊùGreen¼ê()ConceptofGreenFunctionsGreenFunctionsinTime-IndependentProblemsGreenFtnsof3DHolmholtzeq.SuperpositionPrinciplesinInfiniteSpaceGreenFunctionsinFiniteSpace:Definitionù(J`²µü :Ö3m³©Ù§@o§ÏLÖ©U\§Ò±?¿Ö©Ù³ù«{ØL´|^ ©§55C.S.Wu1ÊùGreen¼ê()ConceptofGreenFunctionsGreenFunctionsinTime-IndependentProblemsGreenFtnsof3DHolmholtzeq.SuperpositionPrinciplesinInfiniteSpaceGreenFunctionsinFiniteSpace:DefinitionùÇ:1Green¼êVgÃ.mU\nk.mSGreen¼ê½Â2½¯KGreen¼ê½¯KGreen¼ê5Green¼êé¡5½¯KGreen¼ê){3nÃ.mHelmholtz§Green¼ê){µ¦)){µFourierCC.S.Wu1ÊùGreen¼ê()ConceptofGreenFunctionsGreenFunctionsinTime-IndependentProblemsGreenFtnsof3DHolmholtzeq.SuperpositionPrinciplesinInfiniteSpaceGreenFunctionsinFiniteSpace:Definition3k.mKþE,±rmSÖédu.^§3.¡þ¬k½(ü ½ó4 )a)¡Ö©Ù§Iòù¡Öé/(½(k.mS):Ö³§I½·.^¯K´µXÛÏL(·.^e):Ö³U\§Ñ?¿Ö©Ù3?¿.^e³C.S.Wu1ÊùGreen¼ê()ConceptofGreenFunctionsGreenFunctionsinTime-IndependentProblemsGreenFtnsof3DHolmholtzeq.SuperpositionPrinciplesinInfiniteSpaceGreenFunctionsinFiniteSpace:Definition3k.mKþE,±rmSÖédu.^§3.¡þ¬k½(ü ½ó4 )a)¡Ö©Ù§Iòù¡Öé/(½(k.mS):Ö³§I½·.^¯K´µXÛÏL(·.^e):Ö³U\§Ñ?¿Ö©Ù3?¿.^e³C.S.Wu1ÊùGreen¼ê()ConceptofGreenFunctionsGreenFunctionsinTime-IndependentProblemsGreenFtnsof3DHolmholtzeq.SuperpositionPrinciplesinInfiniteSpaceGreenFunctionsinFiniteSpace:Definition3k.mKþE,±rmSÖédu.^§3.¡þ¬k½(ü ½ó4 )a)¡Ö©Ù§Iòù¡Öé/(½(k.mS):Ö³§I½·.^¯K´µXÛÏL(·.^e):Ö³U\§Ñ?¿Ö©Ù3?¿.^e³C.S.Wu1ÊùGreen¼ê()ConceptofGreenFunctionsGreenFunctionsinTime-IndependentProblemsGreenFtnsof3DHolmholtzeq.SuperpositionPrinciplesinInfiniteSpaceGreenFunctionsinFiniteSpace:Definition3k.mKþE,±rmSÖédu.^§3.¡þ¬k½(ü ½ó4 )a)¡Ö©Ù§Iòù¡Öé/(½(k.mS):Ö³§I½·.^¯K´µXÛÏL(·.^e):Ö³U\§Ñ?¿Ö©Ù3?¿.^e³C.S.Wu1ÊùGreen¼ê()ConceptofGreenFunctionsGreenFunctionsinTime-IndependentProblemsGreenFtnsof3DHolmholtzeq.SuperpositionPrinciplesinInfiniteSpaceGreenFunctionsinFiniteSpace:DefinitionêƯKµ3k.m^½)¯K∇2G(r;r0)=−1ε0δ(r−r0),r,r0∈V·.^)G(r;r0)U\Ñ∇2u(r)=−1ε0ρ(r),r∈VuΣ=f(Σ))u(r)§=^ρ(r),f(Σ)9G(r;r0)L«Ñu(r)C.S.Wu1ÊùGreen¼ê()ConceptofGreenFunctionsGreenFunctionsinTime-IndependentProblemsGreenFtnsof3DHolmholtzeq.SuperpositionPrinciplesinInfiniteSpaceGreenFunctio
本文标题:北大数学物理方法(A)-数学物理方程教案15Green函数1
链接地址:https://www.777doc.com/doc-10661778 .html