您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 理学 > 北大数学物理方法(A)-数学物理方程教案19二阶线性偏微分方程的分类
Outline1Êù5 ©§©aÔnÆêÆÔn{§|2007cSC.S.Wu1ÊùC©{ÐÚOutlineùÇ:15 ©§IO/ªgCþCe ©§25 ©§©a½nV.§ý.§Ô.§C.S.Wu1ÊùC©{ÐÚOutlineùÇ:15 ©§IO/ªgCþCe ©§25 ©§©a½nV.§ý.§Ô.§C.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)ReferencesÇÂÁ§5êÆÔn{6§122Ùù&§5êÆÔn{6§§7.3nÎ!X1Á§5êÆÔn{6§§9.2C.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)§o?Øn«a. ©§½)¯K)µÅħ9D§½¯K§XLaplace§§Poisson§§Helmholtz§C.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)§o?Øn«a. ©§½)¯K)µÅħ9D§½¯K§XLaplace§§Poisson§§Helmholtz§C.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)§o?Øn«a. ©§½)¯K)µÅħ9D§½¯K§XLaplace§§Poisson§§Helmholtz§C.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)§o?Øn«a. ©§½)¯K)µÅħ9D§½¯K§XLaplace§§Poisson§§Helmholtz§C.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)ùna§§£ØÓÔnL§§§)ÑLyÑgØÓA:3êÆþ§ùna§©áV.!Ô.Úý.na5 ©§§´ÄÒkùn«a.ºC.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)ùna§§£ØÓÔnL§§§)ÑLyÑgØÓA:3êÆþ§ùna§©áV.!Ô.Úý.na5 ©§§´ÄÒkùn«a.ºC.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)ùna§§£ØÓÔnL§§§)ÑLyÑgØÓA:3êÆþ§ùna§©áV.!Ô.Úý.na5 ©§§´ÄÒkùn«a.ºC.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)CanonicalFormsPDEunderVariableTransformsùÇ:15 ©§IO/ªgCþCe ©§25 ©§©a½nV.§ý.§Ô.§C.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)CanonicalFormsPDEunderVariableTransforms±ügCþ5 ©§~éuõgCþ/§¯KE,§?ØÄ{ÓC.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)CanonicalFormsPDEunderVariableTransforms±ügCþ5 ©§~éuõgCþ/§¯KE,§?ØÄ{ÓC.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)CanonicalFormsPDEunderVariableTransformsIO/ªa∂2u∂x2+2b∂2u∂x∂y+c∂2u∂y2+d∂u∂x+e∂u∂y+fu+g=0a,b,c,d,e,fÚg´x,y®¼êÏ~b§ëY¼êa,b,c¥§kØð0§ÄKÒؤ٠©§C.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)CanonicalFormsPDEunderVariableTransformsIO/ªa∂2u∂x2+2b∂2u∂x∂y+c∂2u∂y2+d∂u∂x+e∂u∂y+fu+g=0a,b,c,d,e,fÚg´x,y®¼êÏ~b§ëY¼êa,b,c¥§kØð0§ÄKÒؤ٠©§C.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)CanonicalFormsPDEunderVariableTransformsIO/ªa∂2u∂x2+2b∂2u∂x∂y+c∂2u∂y2+d∂u∂x+e∂u∂y+fu+g=0a,b,c,d,e,fÚg´x,y®¼êÏ~b§ëY¼êa,b,c¥§kØð0§ÄKÒؤ٠©§C.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)CanonicalFormsPDEunderVariableTransformsIO/ªa∂2u∂x2+2b∂2u∂x∂y+c∂2u∂y2+d∂u∂x+e∂u∂y+fu+g=0a,b,c,d,e,fÚg´x,y®¼êÏ~b§ëY¼êa,b,c¥§kØð0§ÄKÒؤ٠©§C.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)CanonicalFormsPDEunderVariableTransformsùÇ:15 ©§IO/ªgCþCe ©§25 ©§©a½nV.§ý.§Ô.§C.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)CanonicalFormsPDEunderVariableTransformsÄaÚ(½)cØð0/Øa6≡0Cξ=φ(x,y),η=ψ(x,y)yξÚηE´ÕáCþ§ù|C7L÷v∂(ξ,η)∂(x,y)6=0ea=c=0§K®áue¡Ñ/C.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)CanonicalFormsPDEunderVariableTransformsÄaÚ(½)cØð0/Øa6≡0Cξ=φ(x,y),η=ψ(x,y)yξÚηE´ÕáCþ§ù|C7L÷v∂(ξ,η)∂(x,y)6=0ea=c=0§K®áue¡Ñ/C.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)CanonicalFormsPDEunderVariableTransformsÄaÚ(½)cØð0/Øa6≡0Cξ=φ(x,y),η=ψ(x,y)yξÚηE´ÕáCþ§ù|C7L÷v∂(ξ,η)∂(x,y)6=0ea=c=0§K®áue¡Ñ/C.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)CanonicalFormsPDEunderVariableTransformsÄaÚ(½)cØð0/Øa6≡0Cξ=φ(x,y),η=ψ(x,y)yξÚηE´ÕáCþ§ù|C7L÷v∂(ξ,η)∂(x,y)6=0ea=c=0§K®áue¡Ñ/C.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)CanonicalFormsPDEunderVariableTransformsÄaÚ(½)cØð0/Øa6≡0Cξ=φ(x,y),η=ψ(x,y)yξÚηE´ÕáCþ§ù|C7L÷v∂(ξ,η)∂(x,y)6=0ea=c=0§K®áue¡Ñ/C.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)CanonicalFormsPDEunderVariableTransforms3ù|Ce§k∂u∂x=∂ξ∂x∂u∂ξ+∂η∂x∂u∂η=∂φ∂x∂u∂ξ+∂ψ∂x∂u∂η∂u∂y=∂φ∂y∂u∂ξ+∂ψ∂y∂u∂ηC.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)CanonicalFormsPDEunderVariableTransforms∂2u∂x2=∂φ∂x2∂2u∂ξ2+2∂φ∂x∂ψ∂x∂2u∂ξ∂η+∂ψ∂x2∂2u∂η2+∂2φ∂x2∂u∂ξ+∂2ψ∂x2∂u∂η∂2u∂x∂y=∂φ∂x∂φ∂y∂2u∂ξ2+∂φ∂x∂ψ∂y+∂φ∂y∂ψ∂x∂2u∂ξ∂η+∂ψ∂x∂ψ∂y∂2u∂η2+∂2φ∂x∂y∂u∂ξ+∂2ψ∂x∂y∂u∂η∂2u∂y2=∂φ∂y2∂2u∂ξ2+2∂φ∂y∂ψ∂y∂2u∂ξ∂η+∂ψ∂y2∂2u∂η2+∂2φ∂y2∂u∂ξ+∂2ψ∂y2∂u∂ηC.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)CanonicalFormsPDEunderVariableTransforms§CA∂2u∂ξ2+2B∂2u∂ξ∂η+C∂2u∂η2+D∂u∂ξ+E∂u∂η+Fu+G=0A=a∂φ∂x2+2b∂φ∂x∂φ∂y+c∂φ∂y2B=a∂φ∂x∂ψ∂x+b∂φ∂x∂ψ∂y+∂φ∂y∂ψ∂x+c∂φ∂y∂ψ∂yC=a∂ψ∂x2+2b∂ψ∂x∂ψ∂y+c∂ψ∂y2······C.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)CanonicalFormsPDEunderVariableTransforms§CA∂2u∂ξ2+2B∂2u∂ξ∂η+C∂2u∂η2+D∂u∂ξ+E∂u∂η+Fu+G=0A=a∂φ∂x2+2b∂φ∂x∂φ∂y+c∂φ∂y2B=a∂φ∂x∂ψ∂x+b∂φ∂x∂ψ∂y+∂φ∂y∂ψ∂x+c∂φ∂y∂ψ∂yC=a∂ψ∂x2+2b∂ψ∂x∂ψ∂y+c∂ψ∂y2······C.S.Wu1ÊùC©{ÐÚLinearPDE(2order)ClassificationofPDE’s(2order)CanonicalFormsPDEunderVariableTransforms§CA∂2u∂ξ2+2B∂2u∂ξ∂η+C∂2u∂η2+D∂u∂ξ+E∂u∂η+Fu+G=0A=a∂φ∂x2+2b∂φ∂x∂φ∂y+c∂φ∂y2B=a∂φ∂x∂ψ∂x+b∂φ∂x∂ψ∂y+∂φ∂y∂ψ∂x+c∂φ∂y∂ψ∂yC=a∂ψ∂x2+2b
本文标题:北大数学物理方法(A)-数学物理方程教案19二阶线性偏微分方程的分类
链接地址:https://www.777doc.com/doc-10661782 .html