您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 理学 > 重庆工商大学数学模型与数学实验课件第01讲 数学建模初步
第一章数学建模初步1.1从现实对象到数学模型1.2数学建模的重要意义1.3数学建模示例1.4数学建模的方法和步骤1.5数学模型的特点和分类1.6怎样学习数学建模玩具、照片、飞机、火箭模型……~实物模型水箱中的舰艇、风洞中的飞机……~物理模型地图、电路图、分子结构图……~符号模型模型是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼出来的原型的替代物模型集中反映了原型中人们需要的那一部分特征1.1从现实对象到数学模型我们常见的模型你碰到过的数学模型——“航行问题”用x表示船速,y表示水速,列出方程:75050)(75030)(yxyx答:船速为20千米/小时.甲乙两地相距750千米,船从甲到乙顺水航行需30小时,从乙到甲逆水航行需50小时,问船的速度是多少?x=20y=5求解航行问题建立数学模型的基本步骤•作出简化假设(船速、水速为常数);•用符号表示有关量(x,y表示船速和水速);•用物理定律(匀速运动的距离等于速度乘以时间)列出数学式子(二元一次方程);•求解得到数学解答(x=20,y=5);•回答原问题(船速每小时为20千米/小时)。数学模型(MathematicalModel)和数学建模(MathematicalModeling)对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构。建立数学模型的全过程(包括表述、求解、解释、检验等)数学模型数学建模•例1交通灯在绿灯转换成红灯时,有一个过渡状态——亮一段时间的黄灯。请分析黄灯应当亮多久。设想一下黄灯的作用是什么,不难看出,黄灯起的是警告的作用,意思是马上要转红灯了,假如你能停住,请立即停车。停车是需要时间的,在这段时间内,车辆仍将向前行驶一段距离L。这就是说,在离街口距离为L处存在着一条停车线(尽管它没被画在地上),见左图。对于那些黄灯亮时已过线的车辆,则应当保证它们仍能穿过马路。马路的宽度D是容易测得的,问题的关键在于L的确定。为确定L,还应当将L划分为两段:L1和L2,其中L1是司机在发现黄灯亮及判断应当刹车的反应时间内驶过的路程,L2为刹车制动后车辆驶过的路程。L1较容易计算,交通部门对司机的平均反应时间t1早有测算(反应时间过长将考不出驾照),而此街道的行驶速度v也是交管部门早已定好的,目的是使交通流量最大,可另建模型研究,从而L1=v*t1。刹车距离L2既可用曲线拟合方法得出,也可利用牛顿第二定律计算出来。黄灯究竟应当亮多久现在已经变得清楚多了。第一步,先计算出L应多大才能使看见黄灯的司机停得住车。第二步,黄灯亮的时间应当让已过线的车顺利穿过马路,即T至少应当达到(L+D)/v。DL例2将形状质量相同的砖块一一向右往外叠放,欲尽可能地延伸到远方,问最远可以延伸多大距离。设砖块是均质的,长度与重量均为1,其重心在中点1/2砖长处,现用归纳法推导。Zn(n-1)n(n+1)由第n块砖受到的两个力的力矩相等,有:1/2-Zn=(n-1)Zn故Zn=1/(2n),从而上面n块砖向右推出的总距离为,nkk121112121,时nnknkn故砖块向右可叠至任意远,这一结果多少有点出人意料。例3某人住在某公交线附近,该公交线路为在A、B两地间运行,每隔10分钟A、B两地各发出一班车,此人常在离家最近的C点等车去B地,他发现了一个令他感到奇怪的现象:在绝大多数情况下,先到站的总是由B去A的车,难道由B去A的车次多些吗?请你帮助他找一下原因AB发出车次显然是一样多的,否则一处的车辆将会越积越多。由于距离不同,考察一个时间长度为10分钟的区间,例如,可以从A方向来的车驶离C站时开始,在其后的9分钟内到达的乘客见到先来的车均为B开往A的,仅有最后1分钟到达的乘客才见到由A来的车先到。由此可见,如果此人到C站等车的时间是随机的,则他先遇上B方向来的车的概率为90%。1.2数学建模的重要意义•电子计算机的出现及飞速发展;•数学以空前的广度和深度向一切领域渗透。数学建模作为用数学方法解决实际问题的第一步,越来越受到人们的重视。•在一般工程技术领域数学建模仍然大有用武之地;•在高新技术领域数学建模几乎是必不可少的工具;•数学进入一些新领域,为数学建模开辟了许多处女地。数学建模的具体应用•分析与设计•预报与决策•控制与优化•规划与管理数学建模计算机技术知识经济如虎添翼案例1数学模型预测婚姻走向?你的婚姻是否会一直幸福?你会离婚吗?美国科学家研究出的一个数学模型可能帮你回答这个问题。2004-年在美国科学促进会上,两位来自美国的婚姻研究者和应用数学家向大家介绍了他们的这项研究。他们创造了一个数学模型,可以用来准确预测哪些夫妻将不能白头偕老。他们还表示,这套模型可以帮助夫妻克服那些可能使他们走上离婚之路的行为。华盛顿大学心理学教授和人际关系研究所主任约翰·戈特曼说:“当牛顿把数学方法引入科学,物理学才真正起飞,而心理学研究中,数学的方法往往被忽视。”华盛顿大学应用数学系教授詹姆斯·穆雷说,我们做的是提取婚姻中的关键因素到模型中,以使它具有解释性和预测性,“虽然我们使用的数学方法非常普通,但是模型出奇地准确”。这个模型使用的数据来自戈特曼教授在他实验室里拍摄的数百位夫妻谈话的录影带。生理学上的数据,例如谈话停顿的时间,也被收集起来进行分析。因为从交谈中能够显示出夫妻之间存在的根本性问题,这也是这个模型准确性高的原因。模型的关键在于把夫妻谈话过程中积极的和消极的相互影响的比例进行量化,这个神奇的比例是5∶1,如果比例小于它,婚姻就会遇到问题。研究者把它叫作婚姻谈话的“道琼斯工业指数”。截至目前,这套数学模型已经对700多对夫妇的婚姻持久性进行了检验。这些夫妇最初登记结婚时,研究人员利用这套数学模型判断他们今后是否会离婚,判断正确率高达94%。这套数学模型不仅可以用来推测婚姻的持续性,还有助于夫妻双方早日发现婚姻中存在的问题,改善婚姻质量。案例2男生怎样才能追上女生?一、问题分析男生追女生,对男生来说最重要的是学习、爱情两不误。因此我们引进男生的学业成绩函数Y(t)。首先,我们不考虑男生的追求攻势,则影响该函数的因素主要是两个人的关系程度。为了便于分析,我们将两人的关系简化为女生对该男生的疏远度,于是引入疏远度函数X(t)。问题就转化为求解Y(t)和X(t)的相互作用关系。利用微分,很容易就可以求出两者的关系。但现实中男生可能会对该女生发起一轮轮的追求攻势,因此还要考虑到追求攻势对模型的影响。而追求攻势又与女生的疏远度有关,可以简化地将两者看成是正比关系。将追求攻势加入到模型中,就可以找出攻势与Y(t)和X(t)的关系了。模型假设1、t时刻A君的学业成绩为Y(t);2、t时刻B女对A君的疏远度为X(t);3、当A君没开始追求B女时,B女对A君的疏远度增长(平时发现的A君的不良行为)符合Malthus模型,即dX/dt=aX(t)其中a为正常数。4、当Y(t)存在时,单位时间内减少X(t)的值与X(t)的值成正比,比例常数为b,从而dX(t)/dt=aX(t)-bX(t)Y(t)。5、A君发起对B女追求后,立即转化为B女对A君的好感,并设定转化系数为α,而随着的A君发起对B女的追求,A君学业的自然下降率与学业成绩成正比,比例系数为e。于是有dY(t)/dt=αbX(t)Y(t)-eY(t)。二、模型构成由假设4和5,就得到了学业与疏远度在无外界干扰的情况下互相作用的模型:{dX(t)/dt=aX-bXY;dY(t)/dt=cXY-eY},其中c=αb.(1)这是一个非线性自治系统,为了求两个数X与Y的变化规律,我们对它作定性分析。令{aX-bXY=0;cXY-eY=0}解得系统(1)的两个平衡位置为:O(0,0),M(e/c,a/b)。从(1)的两方程中消去dt,分离变量可求得首次积分:F(X,Y)=cX-dln|X|-aln|Y|=k(2)容易求出函数F(X,Y)有唯一驻点为M(e/c,a/b)。再用极值的充分条件判断条件可以判断M是F的极小值点。同时易见,当X→∞(B女对A君恨之入骨)或Y→∞(A君是一块只会学习的木头)时均有F→∞;而X→0(A君作了变形手术,B女对他毫无防备)或Y→0(A君不学无术,丝毫不学习)时也有F→∞。由此不难看出,在第一象限内部连续的函数z=F(X,Y)的图形是以M为最小值点,且在第一卦限向上无限延伸的曲面,因而它与z=k(k>0)的交线在相平面XOY的投影F(X,Y)=k(k>0)是环绕点M的闭曲线簇。这说明学业成绩和疏远度的指数成周期性变化。三、结果解释从生态意义上看这是容易理解的,当A君的学习成绩Y(t)下降时,B女会疏远A君,疏远度X(t)上升;于是A君就又开始奋发图强,学习成绩Y(t)又上升了。于是B女就又和A君开始了来往,疏远度X(t)又下降了。与B女交往多了,当然分散了学习时间,A君的学习成绩Y(t)下降了。然而我们可证明,尽管闭轨线不同,但在其周期内的X和Y的平均数量都分别是一常数,而且恰为平衡点M的两个坐标。事实上,由(1)的第二个方程可得:dY/Ydt=cX-e,两端在一个周期时间T内积分,得:∫(dy/Ydt)dt=c∮Xdt-dT(3)注意到当t经过一个周期T时,点(X,Y)绕闭轨线运行一圈又回到初始点,从而:∫(dY/Ydt)dt=∮dY/Y=0。所以,由(3)式可得:(∫Xdt)/T=e/c。同理,由(1)的第一个方程可得:(∫Ydt)/T=a/b。模型优化考虑到追求攻势对上述模型的影响。设追求攻势与该时刻的疏远度成正比,比例系数为h,h反映了追求攻势的作用力。在这种情况下,上述学业与疏远度的模型应变为:{dX/dT=aX-bXY-hX=(a-h)X-bXY;dY/dt=cXY-eY-hY=cXY-(e+h)Y}(4)将(4)式与(1)式比较,可见两者形式完全相同,前者仅是把(1)中X与Y的系数分别换成了a-h与e+h。因此,对(4)式有x‘=(∫Xdt)/T=(e+h)/c,y’=(∫Ydt)/t=(a-h)/b(5)利用(5)式我们可见:攻势作用力h的增大使X‘增加,Y’减少。结论考试期间,由于功课繁忙,使得追求攻势减少,即h减小,与平时相比,将有利于学业成绩Y的增长。这就是Volterra原理。此原理对男生有着重要的指导意义:强大的爱情攻势有时不一定能达到满意的效果,反而不利于学业的成长;有时通过慢慢接触,慢慢了解,再加上适当的追求行动,女生的疏远度就会慢慢降低,学习成绩也不会降低!1.3数学建模示例1.3.1椅子能在不平的地面上放稳吗把四只脚的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而有人认为只要稍挪动几次,就可以四脚着地,放稳了,对吗?问题分析模型假设通常~三只脚着地放稳~四只脚着地•四条腿一样长,椅脚与地面点接触,四脚连线呈正方形;•地面高度连续变化,可视为数学上的连续曲面;•地面相对平坦,使椅子在任意位置至少三只脚同时着地。模型构成用数学语言把椅子位置和四只脚着地的关系表示出来•椅子位置利用正方形(椅脚连线)的对称性xBADCOD´C´B´A´用(对角线与x轴的夹角)表示椅子位置•四只脚着地距离是的函数四个距离(四只脚)A,C两脚与地面距离之和~f()B,D两脚与地面距离之和~g()两个距离椅脚与地面距离为零正方形ABCD绕O点旋转正方形对称性用数学语言把椅子位置和四只脚着地的关系表示出来f(),g()是连续函数对任意,f(),g()至少一个为0数学问题已知:f(),g()是连续函数;对任意,f()•g()=0;且g(0)=0,f(0)0,f(0)=g(π/2),g(0)=f(π/2).证明:存在0,使f(0)=g(0)=0.模型构成地面为连续曲面椅子在任意位置至少三只脚着地模型求解给出一种简单、粗糙的证明方法将椅子旋转900,对角线AC和BD互换。由g(0)=0,f(0)0,知f(/2)=0,g(/2)0.令h()=f()–g(),则h(0)0
本文标题:重庆工商大学数学模型与数学实验课件第01讲 数学建模初步
链接地址:https://www.777doc.com/doc-10667336 .html