您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高二数学教案范本(精编4篇)
好范文解忧愁1/17高二数学教案范本(精编4篇)【前言】本站网友为您精挑细选分享的优秀文档“高二数学教案范本(精编4篇)”以供您参考学习使用,希望这篇文档对您有所帮助,喜欢的话就分享给朋友们一起学习吧!高二数学教案1教学目标(1)掌握圆的标准方程,能根据圆心坐标和半径熟练地写出圆的标准方程,也能根据圆的标准方程熟练地写出圆的圆心坐标和半径。(2)掌握圆的一般方程,了解圆的一般方程的结构特征,熟练掌握圆的标准方程和一般方程之间的互化。(3)了解参数方程的概念,理解圆的参数方程,能够进行圆的普通方程与参数方程之间的互化,能应用圆的参数方程解决有关的简单问题。(4)掌握直线和圆的位置关系,会求圆的切线。(5)进一步理解曲线方程的概念、熟悉求曲线方程的方法。教学建议教材分析好范文解忧愁2/17(1)知识结构(2)重点、难点分析①本节内容教学的重点是圆的标准方程、一般方程、参数方程的推导,根据条件求圆的方程,用圆的方程解决相关问题。②本节的难点是圆的一般方程的结构特征,以及圆方程的求解和应用。教法建议(1)圆是最简单的曲线。这节教材安排在学习了曲线方程概念和求曲线方程之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论,为后继学习做好准备。同时,有关圆的问题,特别是直线与圆的位置关系问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法。因此教学中应加强练习,使学生确实掌握这一单元的知识和方法。(2)在解决有关圆的问题的过程中多次用到配方法、待定系数法等思想方法,教学中应多总结。(3)解决有关圆的问题,要经常用到一元二次方程的理论、平面几何知识和前边学过的解析几何的基本知识,教师在教学中要注意多复习、多运用,培养学生运算能力和简化运算过程的意识。(4)有关圆的内容非常丰富,有很多有价值的问好范文解忧愁3/17题。建议适当选择一些内容供学生研究。例如由过圆上一点的切线方程引申到切点弦方程就是一个很有价值的问题。类似的还有圆系方程等问题。教学设计示例圆的一般方程教学目标:(1)掌握圆的一般方程及其特点。(2)能将圆的一般方程转化为圆的标准方程,从而求出圆心和半径。(3)能用待定系数法,由已知条件求出圆的一般方程。(4)通过本节课学习,进一步掌握配方法和待定系数法。教学重点:(1)用配方法,把圆的一般方程转化成标准方程,求出圆心和半径。(2)用待定系数法求圆的方程。教学难点:圆的一般方程特点的研究。教学用具:计算机。教学方法:启发引导法,讨论法。教学过程:引入前边已经学过了圆的标准方程好范文解忧愁4/17把它展开得任何圆的方程都可以通过展开化成形如①的方程问题1形如①的方程的曲线是否都是圆?师生共同讨论分析:如果①表示圆,那么它一定是某个圆的标准方程展开整理得到的我们把它再写成原来的形式不就可以看出来了吗?运用配方法,得②显然②是不是圆方程与是什么样的数密切相关,具体如下:(1)当时,②表示以为圆心、以为半径的圆;(2)当时,②表示一个点;(3)当时,②不表示任何曲线。总结:任意形如①的方程可能表示一个圆,也可能表示一个点,还有可能什么也不表示。圆的一般方程的定义:当时,①表示以为圆心、以为半径的圆,此时①称作圆的一般方程。即称形如的方程为圆的一般方程。好范文解忧愁5/17问题2圆的一般方程的特点,与圆的标准方程的异同。(1)和的系数相同,都不为0.(2)没有形如的二次项。圆的一般方程与一般的二元二次方程③相比较,上述(1)、(2)两个条件仅是③表示圆的必要条件,而不是充分条件或充要条件。圆的一般方程与圆的标准方程各有千秋:(1)圆的标准方程带有明显的几何的影子,圆心和半径一目了然。(2)圆的一般方程表现出明显的代数的形式与结构,更适合方程理论的运用。实例分析例1:下列方程各表示什么图形。(1);(2);一、教学内容分析向量作为工具在数学、物理以及实际生活中都有着广泛的应用。本小节的重点是结合向量知识证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理好范文解忧愁6/17学中的应用。二、教学目标设计1、通过利用向量知识解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的应用,体会从不同角度去看待一些数学问题,使一些数学知识有机联系,拓宽解决问题的思路。2、了解构造法在解题中的运用。三、教学重点及难点重点:平面向量知识在各个领域中应用。难点:向量的构造。四、教学流程设计五、教学过程设计一、复习与回顾1、提问:下列哪些量是向量?(1)力(2)功(3)位移(4)力矩2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么?[说明]复习数量积的有关知识。二、学习新课例1(书中例5)向量作为一种工具,不仅在物理学科中有广泛的应用,同时它在数学学科中也有许多妙用!请看好范文解忧愁7/17例2(书中例3)证法(一)原不等式等价于,由基本不等式知(1)式成立,故原不等式成立。证法(二)向量法[说明]本例关键引导学生观察不等式结构特点,构造向量,并发现(等号成立的充要条件是)例3(书中例4)[说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明。二、巩固练习1、如图,某人在静水中游泳,速度为km/h.(1)如果他径直游向河对岸,水的流速为4km/h,他实际沿什么方向前进?速度大小为多少?答案:沿北偏东方向前进,实际速度大小是8km/h.(2)他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少?答案:朝北偏西方向前进,实际速度大小为km/h.三、课堂小结1、向量在物理、数学中有着广泛的应用。2、要学会从不同的角度去看一个数学问题,是数学知识有机联系。四、作业布置好范文解忧愁8/171、书面作业:课本P73,练习4高二数学教案2简单的逻辑联结词(一)教学目标1、知识与技能目标:(1)掌握逻辑联结词且的含义(2)正确应用逻辑联结词且解决问题(3)掌握真值表并会应用真值表解决问题2、过程与方法目标:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养。3、情感态度价值观目标:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神。(二)教学重点与难点重点:通过数学实例,了解逻辑联结词且的含义,使学生能正确地表述相关数学内容。难点:1、正确理解命题Pq真假的规定和判定。2、简洁、准确地表述命题Pq.教具准备:与教材内容相关的资料。好范文解忧愁9/17教学设想:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养。(三)教学过程学生探究过程:1、引入在当今社会中,人们从事任何工作、学习,都离不开逻辑。具有一定逻辑知识是构成一个公民的文化素质的重要方面。数学的特点是逻辑性强,特别是进入高中以后,所学的数学比初中更强调逻辑性。如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误。其实,同学们在初中已经开始接触一些简易逻辑的知识。在数学中,有时会使用一些联结词,如且或非。在生活用语中,我们也使用这些联结词,但表达的含义和用法与数学中的含义和用法不尽相同。下面介绍数学中使用联结词且或非联结命题时的含义和用法。为叙述简便,今后常用小写字母p,q,r,s,表示命题。(注意与上节学习命题的条件p与结论q的区别)2、思考、分析问题1:下列各组命题中,三个命题间有什么关系?①12能被3整除;好范文解忧愁10/17②12能被4整除;③12能被3整除且能被4整除。学生很容易看到,在第(1)组命题中,命题③是由命题①②使用联结词且联结得到的新命题。问题2:以前我们有没有学习过象这样用联结词且联结的命题呢?你能否举一些例子?例如:命题p:菱形的对角线相等且菱形的对角线互相平分。3、归纳定义一般地,用联结词且把命题p和命题q联结起来,就得到一个新命题,记作pq,读作p且q。命题pq即命题p且q中的且字与下面命题中的且字的含义相同吗?若xA且xB,则xB。定义中的且字与命题中的且字的含义是类似。但这里的逻辑联结词且与日常语言中的和,并且,以及,既又等相当,表明前后两者同时兼有,同时满足。说明:符号与开口都是向下。注意:p且q命题中的p、q是两个命题,而原命题,逆命题,否命题,逆否命题中的p,q是一个命题的条件和结论两个部分。4、命题pq的真假的规定好范文解忧愁11/17你能确定命题pq的真假吗?命题pq和命题p,q的真假之间有什么联系?引导学生分析前面所举例子中命题p,q以及命题pq的真假性,概括出这三个命题的真假之间的关系的一般规律。例如:在上面的例子中,第(1)组命题中,①②都是真命题,所以命题③是真命题。一般地,我们规定:当p,q都是真命题时,pq是真命题;当p,q两个命题中有一个命题是假命题时,pq是假命题。5、例题例1:将下列命题用且联结成新命题pq的形式,并判断它们的真假。(1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等。(2)p:菱形的对角线互相垂直,q:菱形的对角线互相平分;(3)p:35是15的倍数,q:35是7的倍数。解:(1)pq:平行四边形的对角线互相平分且平行四边形的对角线相等。也可简写成平行四边形的对角线互相平分且相等。由于p是真命题,且q也是真命题,所以pq是真好范文解忧愁12/17命题。(2)pq:菱形的对角线互相垂直且菱形的对角线互相平分。也可简写成菱形的对角线互相垂直且平分。由于p是真命题,且q也是真命题,所以pq是真命题。(3)pq:35是15的倍数且35是7的倍数。也可简写成35是15的倍数且是7的倍数。由于p是假命题,q是真命题,所以pq是假命题。说明,在用且联结新命题时,如果简写,应注意保持命题的意思不变。例2:用逻辑联结词且改写下列命题,并判断它们的真假。(1)1既是奇数,又是素数;(2)2是素数且3是素数;6.巩固练习:P20练习第1,2题7.教学反思:(1)掌握逻辑联结词且的含义(2)正确应用逻辑联结词且解决问题高二数学教案3教学准备教学目标好范文解忧愁13/171、知识与技能:(1)推广角的概念、引入大于角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣;(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识。2、过程与方法:通过创设情境:“转体,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习。3、情态与价值:通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分。角的概念推广以好范文解忧愁14/17后,知道角之间的关系。理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物。教学重难点重点:理解正角、负角和零角的定义,掌握终边相同角的表示法。难点:终边相同的角的表示。教学工具投影仪等。教学过程创设情境思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1。25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角。探究新知1、初中时,我们已学习了角的概念,它是如何定义的呢?[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。如图—1,好范文解忧愁15/17一条射线由原来的位置,绕着它的端点o按逆时针方向旋转到终止位置OB,就形成角a。旋转开始时的射线叫做角的始边,OB叫终边,射线的端点o叫做叫a的顶点。2、如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体”(
本文标题:高二数学教案范本(精编4篇)
链接地址:https://www.777doc.com/doc-10682077 .html