您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2022年新高考全国卷高考真题数学试卷答案
2022年普通高等学校招生全国统一考试(新高考全国Ⅰ卷)数学试卷本试卷共4页,22小题,满分150分。考试用时120分钟。注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。4.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若集合{4},{31}MxxNxx∣∣,则MN()A.02xxB.123xxC.316xxD.1163xx2.若i(1)1z,则zz()A.2B.1C.1D.23.在ABC△中,点D在边AB上,2BDDA.记CACD,mn,则CB()A.32mnB.23mnC.32mnD.23mn4.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m.时,相应水面的面积为21400km.;水位为海拔1575m.时,相应水面的面积为21800km.,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m.上升到1575m.时,增加的水量约为(72.65)()A.931.010mB.931.210mC.931.410mD.931.610m5.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.236.记函数π()sin(0)4fxxb的最小正周期为T.若2ππ3T,且()yfx的图像关于点3π,22中心对称,则π2f()A.1B.32C.52D.37.设0.110.1e,ln0.99abc,,则()A.abcB.cbaC.cabD.acb8.已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为36π,且333l,则该正四棱锥体积的取值范围是()A.8118,4B.2781,44C.2764,43D.[18,27]二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。9.已知正方体1111ABCDABCD,则()A.直线1BC与1DA所成的角为90B.直线1BC与1CA所成的角为90C.直线1BC与平面11BBDD所成的角为45D.直线1BC与平面ABCD所成的角为4510.已知函数3()1fxxx,则()A.()fx有两个极值点B.()fx有三个零点C.点(0,1)是曲线()yfx的对称中心D.直线2yx是曲线()yfx的切线11.已知O为坐标原点,点(1,1)A在抛物线2:2(0)Cxpyp上,过点(0,1)B的直线交C于P,Q两点,则()A.C的准线为1yB.直线AB与C相切C.2|||||OPOQOAD.2||||||BPBQBA12.已知函数()fx及其导函数()fx的定义域均为R,记()()gxfx.若322fx,(2)gx均为偶函数,则()A.(0)0fB.102gC.(1)(4)ffD.(1)(2)gg三、填空题:本题共4小题,每小题5分,共20分.13.81()yxyx的展开式中26xy的系数为________________(用数字作答).14.写出与圆221xy和22(3)(4)16xy都相切的一条直线的方程________________.15.若曲线()exyxa有两条过坐标原点的切线,则a的取值范围是________________.16.已知椭圆2222:1(0)xyCabab,C的上顶点为A,两个焦点为1F,2F,离心率为12.过1F且垂直于2AF的直线与C交于D,E两点,||6DE,则ADE的周长是________________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)记nS为数列na的前n项和,已知11,nnSaa是公差为13的等差数列.(1)求na的通项公式;(2)证明:121112naaa.18.(12分)记ABC的内角A,B,C的对边分别为a,b,c,已知cossin21sin1cos2ABAB.(1)若23C,求B;(2)求222abc的最小值.19.(12分)如图,直三棱柱111ABCABC的体积为4,1ABC的面积为22.(1)求A到平面1ABC的距离;(2)设D为1AC的中点,1AAAB,平面1ABC平面11ABBA,求二面角ABDC的正弦值.20.(12分)一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:不够良好良好病例组4060对照组1090(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”,(|)(|)PBAPBA与(|)(|)PBAPBA的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.(ⅰ)证明:(|)(|)(|)(|)PABPABRPABPAB;(ⅱ)利用该调查数据,给出(|),(|)PABPAB的估计值,并利用(ⅰ)的结果给出R的估计值.附:22()()()()()nadbcKabcdacbd,2PKk0.0500.0100.001k3.8416.63510.82821.(12分)已知点(2,1)A在双曲线2222:1(1)1xyCaaa上,直线l交C于P,Q两点,直线,APAQ的斜率之和为0.(1)求l的斜率;(2)若tan22PAQ,求PAQ△的面积.22.(12分)已知函数()exfxax和()lngxaxx有相同的最小值.(1)求a;(2)证明:存在直线yb,其与两条曲线()yfx和()ygx共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.参考答案一、选择题1.D2.D3.B4.C5.D6.A7.C8.C二、选择题9.ABD10.AC11.BCD12.BC三、填空题13.-2814.3544yx或7252424yx或1x15.,40,16.13四、解答题17.(1)12nnna(2)12112,11nannnn∴12111naaa1111112121222311nnn18.(1)π6;(2)425.19.(1)2(2)3220.(1)由已知222()200(40906010)=24()()()()50150100100nadbcKabcdacbd,又2(6.635)=0.01PK,246.635,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.(2)(i)因为(|)(|)()()()()=(|)(|)()()()()PBAPBAPABPAPABPARPBAPBAPAPABPAPAB,所以()()()()()()()()PABPBPABPBRPBPABPBPAB所以(|)(|)(|)(|)PABPABRPABPAB;(ii)6R;21.(1)1;(2)1629.22.(1)1a(2)由(1)可得e()xxfx和()lngxxx的最小值为11ln11ln11.当1b时,考虑exxb的解的个数、lnxxb的解的个数.设exSxxb,e1xSx,当0x时,0Sx,当0x时,0Sx,故Sx在,0上为减函数,在0,上为增函数,所以min010SxSb,而e0bSb,e2bSbb,设e2bubb,其中1b,则e20bub,故ub在1,上为增函数,故1e20ubu,故0Sb,故exSxxb有两个不同的零点,即exxb的解的个数为2.设lnTxxxb,1xTxx,当01x时,()0Tx¢,当1x时,0Tx,故Tx在()0,1上为减函数,在1,上为增函数,所以min110TxTb,而ee0bbT,ee20bbTb,lnTxxxb有两个不同的零点即lnxxb的解的个数为2.当1b,由(1)讨论可得lnxxb、exxb仅有一个零点,当1b时,由(1)讨论可得lnxxb、exxb均无零点,故若存在直线yb与曲线yfx、()ygx=有三个不同的交点,则1b.设()eln2xhxxx,其中0x,故1()e2xhxx,设e1xsxx,0x,则e10xsx,故sx在0,上为增函数,故00sxs即e1xx,所以1()1210hxxx,所以()hx在0,上为增函数,而(1)e20h,31e333122()e3e30eeeh,故hx在0,上有且只有一个零点0x,0311ex且:当00xx时,0hx即elnxxxx即fxgx,当0xx时,0hx即elnxxxx即fxgx,因此若存在直线yb与曲线yfx、()ygx=有三个不同交点,故001bfxgx,此时exxb有两个不同的零点1010,(0)xxxx,此时lnxxb有两个不同的零点0404,(01)xxxx,故11exxb,00exxb,44ln0xxb,00ln0xxb所以44lnxbx即44exbx即44e0xbxbb,故4xb为方程exxb的解,同理0xb也为方程exxb的解又11exxb可化为11exxb即11ln0xxb即11ln0xbxbb,故1xb为方程lnxxb的解,同理0xb也为方程lnxxb的解,所以1004,,xxxbxb,而1b,故0410xxbxxb即1402xxx.的
本文标题:2022年新高考全国卷高考真题数学试卷答案
链接地址:https://www.777doc.com/doc-11029386 .html