您好,欢迎访问三七文档
2021年普通高等学校招生全国统一考试数学【文科】注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码粘贴处”。2.作答选择题时,选出每小题答案后,用28铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上,3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案:不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一井交回。适用地区:河南、安徽、江西、山西、陕西、黑龙江、吉林、甘肃、内蒙古、青海、宁夏、新疆一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集1,2,3,4,5U,集合1,2,3,4MN,则()UMNð()A.5B.1,2C.3,4D.1,2,3,42.设i43iz,则z()A.–34iB.34iC.34iD.34i3.已知命题:,sin1pxxR﹔命题:qxR﹐||e1x,则下列命题中为真命题的是()A.pqB.pqC.pqD.pq4.函数()sincos33xxfx的最小正周期和最大值分别是()A.3π和2B.3π和2C.6π和2D.6π和25.若,xy满足约束条件4,2,3,xyxyy则3zxy的最小值为()A.18B.10C.6D.46.22π5πcoscos1212()A.12B.33C.22D.327.在区间10,2随机取1个数,则取到的数小于13的概率为()A.34B.23C.13D.168.下列函数中最小值为4的是()A.224yxxB.4sinsinyxxC.222xxyD.4lnlnyxx9.设函数1()1xfxx,则下列函数中为奇函数的是()A.11fxB.11fxC.11fxD.11fx10.在正方体1111ABCDABCD中,P为11BD的中点,则直线PB与1AD所成的角为()A.π2B.π3C.π4D.π611.设B是椭圆22:15xCy的上顶点,点P在C上,则PB的最大值为()A.52B.6C.5D.212.设0a,若xa为函数2fxaxaxb的极大值点,则()A.abB.abC.2abaD.2aba二、填空题:本题共4小题,每小题5分,共20分.13.已知向量2,5,,4ab,若//abrr,则_________.14.双曲线22145xy的右焦点到直线280xy的距离为________.15.记ABC的内角A,B,C的对边分别为a,b,c,面积为3,60B,223acac,则b________.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).三、解答题.共70分.解答应写出文字说明,证明过程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x和y,样本方差分别记为21S和22S.(1)求x,y,21S,22S;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210SSyx,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).18.如图,四棱锥PABCD的底面是矩形,PD底面ABCD,M为BC的中点,且PBAM.(1)证明:平面PAM平面PBD;(2)若1PDDC,求四棱锥PABCD的体积.19.设na是首项为1的等比数列,数列nb满足3nnnab.已知1a,23a,39a成等差数列.(1)求na和nb的通项公式;(2)记nS和nT分别为na和nb的前n项和.证明:2nnST.20.已知抛物线2:2(0)Cypxp的焦点F到准线的距离为2.(1)求C的方程;(2)已知O为坐标原点,点P在C上,点Q满足9PQQF,求直线OQ斜率的最大值.21.已知函数32()1fxxxax.(1)讨论fx的单调性;(2)求曲线yfx过坐标原点的切线与曲线yfx的公共点的坐标.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做.则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,C的圆心为2,1C,半径为1.(1)写出C的一个参数方程;(2)过点4,1F作C的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.[选修4—5:不等式选讲]23.已知函数3fxxax.(1)当1a时,求不等式6fx的解集;(2)若fxa,求a的取值范围.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集1,2,3,4,5U,集合1,2,3,4MN,则()UMNð()A.5B.1,2C.3,4D.1,2,3,4【答案】A【解析】【分析】首先进行并集运算,然后进行补集运算即可.【详解】由题意可得:1,2,3,4MNU,则5UMNð.故选:A.2.设i43iz,则z()A.–34iB.34iC.34iD.34i【答案】C【解析】【分析】由题意结合复数的运算法则即可求得z的值.【详解】由题意可得:2434343341iiiiziii.故选:C.3.已知命题:,sin1pxxR﹔命题:qxR﹐||e1x,则下列命题中为真命题的是()A.pqB.pqC.pqD.pq【答案】A【解析】【分析】由正弦函数的有界性确定命题p的真假性,由指数函数的知识确定命题q的真假性,由此确定正确选项.【详解】由于1sin1x,所以命题p为真命题;由于0x,所以||e1x,所以命题q为真命题;所以pq为真命题,pq、pq、pq为假命题.故选:A.4.函数()sincos33xxfx的最小正周期和最大值分别是()A.3π和2B.3π和2C.6π和2D.6π和2【答案】C【解析】【分析】利用辅助角公式化简fx,结合三角函数最小正周期和最大值的求法确定正确选项.【详解】由题,2sin34xfx,所以fx的最小正周期为2613Tpp==,最大值为2.故选:C.5.若,xy满足约束条件4,2,3,xyxyy则3zxy的最小值为()A.18B.10C.6D.4【答案】C【解析】【分析】由题意作出可行域,变换目标函数为3yxz,数形结合即可得解.【详解】由题意,作出可行域,如图阴影部分所示,由43xyy可得点1,3A,转换目标函数3zxy为3yxz,上下平移直线3yxz,数形结合可得当直线过点A时,z取最小值,此时min3136z.故选:C.6.22π5πcoscos1212()A.12B.33C.22D.32【答案】D【解析】【分析】由题意结合诱导公式可得22225coscoscossin12121212,再由二倍角公式即可得解.【详解】由题意,2222225coscoscoscoscossin12121221212123cos26.故选:D.7.在区间10,2随机取1个数,则取到的数小于13的概率为()A.34B.23C.13D.16【答案】B【解析】【分析】根据几何概型的概率公式即可求出.【详解】设“区间10,2随机取1个数”102xx,A“取到的数小于13”103xx,所以10231302lAPAl.故选:B.【点睛】本题解题关键是明确事件“取到的数小于13”对应的范围,再根据几何概型的概率公式即可准确求出.8.下列函数中最小值为4的是()A.224yxxB.4sinsinyxxC.222xxyD.4lnlnyxx【答案】C【解析】【分析】根据二次函数的性质可判断A选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出,BD不符合题意,C符合题意.【详解】对于A,2224133yxxx,当且仅当1x时取等号,所以其最小值为3,A不符合题意;对于B,因为0sin1x,4sin244sinyxx,当且仅当sin2x时取等号,等号取不到,所以其最小值不为4,B不符合题意;对于C,因为函数定义域为R,而20x,242222442xxxxy,当且仅当22x,即1x时取等号,所以其最小值为4,C符合题意;对于D,4lnlnyxx,函数定义域为0,11,,而lnxR且ln0x,如当ln1x,5y,D不符合题意.故选:C.【点睛】本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出.9.设函数1()1xfxx,则下列函数中为奇函数的是()A.11fxB.11fxC.11fxD.11fx【答案】B【解析】【分析】分别求出选项的函数解析式,再利用奇函数的定义即可.【详解】由题意可得12()111xfxxx,对于A,2112fxx不是奇函数;对于B,211fxx是奇函数;对于C,21122fxx,定义域不关于原点对称,不是奇函数;对于D,2112fxx,定义域不关于原点对称,不是奇函数.故选:B【点睛】本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题.10.在正方体1111ABCDABCD中,P为11BD的中点,则直线PB与1AD所成的角为()A.π2B.π3C.π4D.π6【答案】D【解析】【分析】平移直线1AD至1BC,将直线PB与1AD所成的角转化为PB与1BC所成的角,解三角形即可.【详解】如图,连接11,,BCPCPB,因为1AD∥1BC,所以1PBC或其补角为直线PB与1AD所成的角,因为1BB平面1111DCBA,所以11BBPC,又111PCBD,1111BBBDB,所以1PC平面1PBB,所以1PCPB,设正方体棱长为2,则1111122,22BCPCDB,1111sin2PCPBCBC,所以16PBC.故选:D11.设B是椭圆22:15xCy的上顶点,点P在C上,则PB的最大值为()A.52B.6C.5D.2【答案】A【解析】【分析】设点00,Pxy,由依题意可知,0,1B,220015xy,再根据两点间的距离公式得到2PB,然后消元,即可利用二次函数的性质求出最大值.【详解】设点00,Pxy,因为0,1B,220015xy,所以22222
本文标题:2021年全国高考乙卷数学(文科)试题(逐题解析word版)【适用地区:河南、安徽、江西、山西、陕西
链接地址:https://www.777doc.com/doc-11157363 .html