您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 四川省广元市2021年中考数学试题(解析版)
四川省广元市2021中考数学试题一、选择题.(每小题给出的四个选项中,只有一个是符合题意的.每小题3分,共30分)1.计算32的最后结果是()A.1B.1C.5D.5【答案】C【解析】【分析】先计算绝对值,再将减法转化为加法运算即可得到最后结果.【详解】解:原式325,故选:C.【点睛】本题考查了绝对值化简和有理数的加减法运算,解决本题的关键是牢记绝对值定义与有理数运算法则,本题较基础,考查了学生对概念的理解与应用.2.下列图形均表示医疗或救援的标识,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称及中心对称图形的定义逐一判断即可得答案.【详解】A.是轴对称图形,但不是中心对称图形,故该选项不符合题意,B.是轴对称图形,但不是中心对称图形,故该选项不符合题意,C.是轴对称图形,又是中心对称图形,故该选项符合题意,D.既不是轴对称图形,又不是中心对称图形,故该选项不符合题意,故选:C.【点睛】本题考查轴对称图形及中心对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后能完全重合;中心对称图形的关键是寻找对称中心,图形绕对称中心旋转180°后,两部分能够完全重合;熟练掌握定义是解题关键.3.下列运算正确的是()A.221124aaB.2339aaaC.23161aaD.2222ababab【答案】B【解析】【分析】分别根据完全平方公式、平方差公式、单项式乘以多项式法则、多项式乘以多项式法则进行计算即可判断求解.【详解】解:A.221124aaa,原选项计算错误,不合题意;B.2339aaa,原选项计算正确,符合题意;C.23162aa,原选项计算错误,不合题意;D.22222222ababaababbaabb,原选项计算错误,不合题意.故选:B【点睛】本题考查了整式的乘法运算,乘法公式等知识,熟知乘法公式和整式的乘法法则是解题关键.4.一组数据:1,2,2,3,若添加一个数据3,则不发生变化的统计量是()A.平均数B.中位数C.众数D.方差【答案】B【解析】【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【详解】解:A、原来数据的平均数是122342,添加数字3后平均数为122331155,所以平均数发生了变化,故A不符合题意;B、原来数据的中位数是2,添加数字3后中位数仍为2,故B与要求相符;C、原来数据的众数是2,添加数字3后众数为2和3,故C与要求不符;D、原来数据的方差=222211[(12)(22)(22)(32)]42,添加数字3后的方差=222221111111111114[(1)(2)(2)(3)+(3)]5555555,故方差发生了变化,故选项D不符合题意.故选:B.【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.5.下列命题中,真命题是()A.1122xxB.对角线互相垂直的四边形是菱形C.顺次连接矩形各边中点的四边形是正方形D.已知抛物线245yxx,当15x时,0y【答案】D【解析】【分析】根据零次幂、菱形的判定、正方形的判定及二次函数的图象与性质可直接进行排除选项.【详解】解:A、122xx,错误,故不符合题意;B、对角线互相垂直且平分的四边形是菱形,错误,故不符合题意;C、顺次连接矩形各边中点的四边形是菱形,错误,故不符合题意;D、由抛物线245yxx可得与x轴的交点坐标为1,0,5,0,开口向上,然后可得当15x时,0y,正确,故符合题意;故选D.【点睛】本题主要考查零次幂、菱形的判定、正方形的判定及二次函数的图象与性质,熟练掌握零次幂、菱形的判定、正方形的判定及二次函数的图象与性质是解题的关键.6.观察下列作图痕迹,所作线段CD为ABC的角平分线的是()A.B.C.D.【答案】C【解析】【分析】根据角平分线画法逐一进行判断即可.【详解】A:所作线段为AB边上的高,选项错误;B:做图痕迹为AB边上的中垂线,CD为AB边上的中线,选项错误;C:CD为ACB的角平分线,满足题意。D:所作线段为AB边上的高,选项错误故选:C.【点睛】本题考查点到直线距离的画法,角平分线的画法,中垂线的画法,能够区别彼此之间的不同是解题切入点.7.如图,从一块直径是2的圆形铁片上剪出一个圆心角为90的扇形,将剪下来的扇形围成一个圆锥.那么这个圆锥的底面圆的半径是()A.4B.24C.12D.1【答案】B【解析】【分析】先计算BC的长度,然后围成的圆锥底面周长等同于BC的长度,根据公式计算即可.【详解】解:如下图:连接BC,AO,∵90BAC,∴BC是直径,且BC=2,又∵ABAC,∴45ABCACB,,AOBC又∵sin45OAAB,112OABC,∴212sin452OAAB,∴BC的长度为:9022=1802,∴围成的底面圆周长为22,设圆锥的底面圆的半径为r,则:222r,∴212=224r.故选:B【点睛】本题考查扇形弧长的计算,圆锥底面半径的计算,解直角三角形等相关知识点,根据条件计算出扇形的半径是解题的关键.8.将二次函数2yx2x3的图象在x轴上方的部分沿x轴翻折后,所得新函数的图象如图所示.当直线yxb与新函数的图象恰有3个公共点时,b的值为()A.214或3B.134或3C.214或3D.134或3【答案】A【解析】【分析】由二次函数解析式2yx2x3,可求与x轴的两个交点A、B,直线yxb表示的图像可看做是直线yx的图像平移b个单位长度得到,再结合所给函数图像可知,当平移直线yx经过B点时,恰与所给图像有三个交点,故将B点坐标代入即可求解;当平移直线yx经过C点时,恰与所给图像有三个交点,即直线yxb与函数2yx2x3关于x轴对称的函数223yxx图像只有一个交点,即联立解析式得到的方程的判别式等于0,即可求解.【详解】解:由2yx2x3知,当0y时,即2230xx解得:121,3xx1,0,3,0AB作函数yx的图像并平移至过点B时,恰与所给图像有三个交点,此时有:03b3b平移图像至过点C时,恰与所给图像有三个交点,即当13x时,只有一个交点当13x的函数图像由2yx2x3的图像关于x轴对称得到当13x时对应的解析式为223yxx即223yxbyxx,整理得:2330xxb234132140bb214b综上所述3b或214故答案是:A.【点睛】本题主要考察二次函数翻折变化、交点个数问题、函数图像平移的性质、二次函数与一元二次方程的关系等知识,属于函数综合题,中等难度.解题的关键是数形结合思想的运用,从而找到满足题意的条件.9.如图,在边长为2的正方形ABCD中,AE是以BC为直径的半圆的切线,则图中阴影部分的面积为()A.32B.2C.1D.52【答案】D【解析】【分析】取BC的中点O,设AE与⊙O的相切的切点为F,连接OF、OE、OA,由题意可得OB=OC=OA=1,∠OFA=∠OFE=90°,由切线长定理可得AB=AF=2,CE=CF,然后根据割补法进行求解阴影部分的面积即可.【详解】解:取BC的中点O,设AE与⊙O的相切的切点为F,连接OF、OE、OA,如图所示:∵四边形ABCD是正方形,且边长为2,∴BC=AB=2,∠ABC=∠BCD=90°,∵AE是以BC为直径的半圆的切线,∴OB=OC=OF=1,∠OFA=∠OFE=90°,∴AB=AF=2,CE=CF,∵OA=OA,∴Rt△ABO≌Rt△AFO(HL),同理可证△OCE≌△OFE,∴,AOBAOFCOEFOE,∴90AOBCOEAOBBAO,∴COEBAO,∴ABOOCE∽,∴OCCEABOB,∴12CE,∴15222222ABOOCEABCESSSSSS阴影半圆半圆四边形;故选D.【点睛】本题主要考查切线的性质定理、切线长定理、正方形的性质及相似三角形的性质与判定,熟练掌握切线的性质定理、切线长定理、正方形的性质及相似三角形的性质与判定是解题的关键.10.如图,在ABC中,90ACB,4ACBC,点D是BC边的中点,点P是AC边上一个动点,连接PD,以PD为边在PD的下方作等边三角形PDQ,连接CQ.则CQ的最小值是()A.32B.1C.2D.32【答案】B【解析】【分析】以CD为边作等边三角形CDE,连接EQ,由题意易得∠PDC=∠QDE,PD=QD,进而可得△PCD≌△QED,则有∠PCD=∠QED=90°,然后可得点Q是在QE所在直线上运动,所以CQ的最小值为CQ⊥QE时,最后问题可求解.【详解】解:以CD为边作等边三角形CDE,连接EQ,如图所示:∵PDQ是等边三角形,∴60,,CEDPDQCDEPDQDCDED,∵∠CDQ是公共角,∴∠PDC=∠QDE,∴△PCD≌△QED(SAS),∵90ACB,4ACBC,点D是BC边的中点,∴∠PCD=∠QED=90°,122CDDECEBC,∴点Q是在QE所在直线上运动,∴当CQ⊥QE时,CQ取的最小值,∴9030QECCED,∴112CQCE;故选B.【点睛】本题主要考查等边三角形的性质、含30°直角三角形的性质及最短路径问题,熟练掌握等边三角形的性质、含30°直角三角形的性质及最短路径问题是解题的关键.二、填空题(把正确答案直接写在答题卡对应题目的横线上.每小题4分,共24分)11.16的算术平方根是_____.【答案】2【解析】【详解】∵16=4,4的算术平方根是2,∴16的算术平方根是2.【点睛】这里需注意:16的算术平方根和16的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错.12.中国杂交水稻之父、中国工程院院士、共和国勋章获得者袁隆平于2021年5月22日因病去世,享年91岁,袁隆平的去世是中国乃至全世界的重大损失.袁隆平一生致力于水稻杂交技术研究,为提高我国水稻亩产量做出了巨大贡献.截至2012年,“种三产四”丰产工程项目累计示范推广面积达2000多万亩,增产20多亿公斤.将20亿这个数据用科学记数法表示为________.【答案】9210【解析】【分析】科学记数法要求,小数点在第一个不为零的整数后面,其他数为小数,小数点移动位数等于幂的指数,向左移动,指数为正,向右移动,指数为负.【详解】892010=210故答案为:9210.【点睛】本题考查科学记数法,根据相关原则进行计算是解题关键点.13.如图,实数5,15,m在数轴上所对应的点分别为A,B,C,点B关于原点O的对称点为D.若m为整数,则m的值为________.【答案】-3【解析】【分析】先求出D点表示的数,再得到m的取值范围,最后在范围内找整数解即可.【详解】解:∵点B关于原点O的对称点为D,点B表示的数为15,∴点D表示的数为15,∵A点表示5,C点位于A、D两点之间,∴155m,∵m为整数,∴3m;故答案为:3.【点睛】本题考查了数轴上点的特征,涉及到相反数的性质、对无理数进行估值、确定不等式组的整数解等问题,解决本题的关键是牢记相关概念和性质,本题蕴含了数形结合的思想方法.14.如图,在44的正方形网格图中,已知点A、B、C、D、O均在格点上,其中A、B、D又在O上,点E是线段CD与O的交点.则BAE的正切值为_____
本文标题:四川省广元市2021年中考数学试题(解析版)
链接地址:https://www.777doc.com/doc-11195669 .html