您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 云南省曲靖市2018年中考数学真题试题(含解析)
1云南省曲靖市2018年中考数学真题试题一、选择题(共8题,每题4分)1.(4分)﹣2的绝对值是()A.2B.﹣2C.D.2.(4分)如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为()A.B.C.D.3.(4分)下列计算正确的是()A.a2•a=a2B.a6÷a2=a3C.a2b﹣2ba2=﹣a2bD.(﹣)3=﹣4.(4分)截止2018年5月末,中国人民银行公布的数据显示,我国外汇的储备规模约为3.11×104亿元美元,则3.11×104亿表示的原数为()A.2311000亿B.31100亿C.3110亿D.311亿5.(4分)若一个正多边形的内角和为720°,则这个正多边形的每一个内角是()A.60°B.90°C.108°D.120°6.(4分)下列二次根式中能与2合并的是()A.B.C.D.7.(4分)如图,在平面直角坐标系中,将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,若反比例函数y=的图象经过点A的对应点A′,则k的值为()2A.6B.﹣3C.3D.68.(4分)如图,在正方形ABCD中,连接AC,以点A为圆心,适当长为半径画弧,交AB、AC于点M,N,分别以M,N为圆心,大于MN长的一半为半径画弧,两弧交于点H,连结AH并延长交BC于点E,再分别以A、E为圆心,以大于AE长的一半为半径画弧,两弧交于点P,Q,作直线PQ,分别交CD,AC,AB于点F,G,L,交CB的延长线于点K,连接GE,下列结论:①∠LKB=22.5°,②GE∥AB,③tan∠CGF=,④S△CGE:S△CAB=1:4.其中正确的是()A.①②③B.②③④C.①③④D.①②④二、填空题(共6题,每题3分)9.(3分)如果水位升高2m时,水位的变化记为+2m,那么水位下降3m时,水位的变化情况是.10.(3分)如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE=°.11.(3分)如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是.312.(3分)关于x的方程ax2+4x﹣2=0(a≠0)有实数根,那么负整数a=(一个即可).13.(3分)一个书包的标价为115元,按8折出售仍可获利15%,该书包的进价为元.14.(3分)如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018=个单位长度.三、解答题15.(5分)计算﹣(﹣2)+(π﹣3.14)0++(﹣)﹣116.先化简,再求值(﹣)÷,其中a,b满足a+b﹣=0.17.如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N是线段EF上两点,且EM=FN,连接AN,CM.(1)求证:△AFN≌△CEM;(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数.18.甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做4100个所用的时间相等,求甲乙两人每小时各做几个零件?19.某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.20.某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A型电脑x台.(1)求y关于x的函数解析式;(2)若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元?21.数学课上,李老师准备了四张背面看上去无差别的卡片A,B,C,D,每张卡片的正面标有字母a,b,c表示三条线段(如图),把四张卡片背面朝上放在桌面上,李老师从这四张卡片中随机抽取一张卡片后不放回,再随机抽取一张.(1)用树状图或者列表表示所有可能出现的结果;(2)求抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率.22.如图,AB为⊙O的直径,点C为⊙O上一点,将弧BC沿直线BC翻折,使弧BC的中点D恰好与圆心O重合,连接OC,CD,BD,过点C的切线与线段BA的延长线交于点P,连接AD,5在PB的另一侧作∠MPB=∠ADC.(1)判断PM与⊙O的位置关系,并说明理由;(2)若PC=,求四边形OCDB的面积.23.如图:在平面直角坐标系中,直线l:y=x﹣与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=.(1)求抛物线的解析式;(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.6参考答案与试题解析一、选择题(共8题,每题4分)1.(4分)﹣2的绝对值是()A.2B.﹣2C.D.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.2.(4分)如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为()A.B.C.D.【解答】解:从左面看去,是两个有公共边的矩形,如图所示:故选:D.3.(4分)下列计算正确的是()A.a2•a=a2B.a6÷a2=a3C.a2b﹣2ba2=﹣a2bD.(﹣)3=﹣【解答】解:A、原式=a3,不符合题意;B、原式=a4,不符合题意;C、原式=﹣a2b,符合题意;7D、原式=﹣,不符合题意,故选:C.4.(4分)截止2018年5月末,中国人民银行公布的数据显示,我国外汇的储备规模约为3.11×104亿元美元,则3.11×104亿表示的原数为()A.2311000亿B.31100亿C.3110亿D.311亿【解答】解:3.11×104亿=31100亿故选:B.5.(4分)若一个正多边形的内角和为720°,则这个正多边形的每一个内角是()A.60°B.90°C.108°D.120°【解答】解:(n﹣2)×180°=720°,∴n﹣2=4,∴n=6.则这个正多边形的每一个内角为720°÷6=120°.故选:D.6.(4分)下列二次根式中能与2合并的是()A.B.C.D.【解答】解:A、,不能与2合并,错误;B、能与2合并,正确;C、不能与2合并,错误;D、不能与2合并,错误;故选:B.7.(4分)如图,在平面直角坐标系中,将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,若反比例函数y=的图象经过点A的对应点A′,则k的值为()8A.6B.﹣3C.3D.6【解答】解:如图所示:∵将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,反比例函数y=的图象经过点A的对应点A′,∴A′(3,1),则把A′代入y=,解得:k=3.故选:C.8.(4分)如图,在正方形ABCD中,连接AC,以点A为圆心,适当长为半径画弧,交AB、AC于点M,N,分别以M,N为圆心,大于MN长的一半为半径画弧,两弧交于点H,连结AH并延长交BC于点E,再分别以A、E为圆心,以大于AE长的一半为半径画弧,两弧交于点P,Q,作直线PQ,分别交CD,AC,AB于点F,G,L,交CB的延长线于点K,连接GE,下列结论:①∠LKB=22.5°,②GE∥AB,③tan∠CGF=,④S△CGE:S△CAB=1:4.其中正确的是()9A.①②③B.②③④C.①③④D.①②④【解答】解:①∵四边形ABCD是正方形,∴∠BAC=∠BAD=45°,由作图可知:AE平分∠BAC,∴∠BAE=∠CAE=22.5°,∵PQ是AE的中垂线,∴AE⊥PQ,∴∠AOL=90°,∵∠AOL=∠LBK=90°,∠ALO=∠KLB,∴∠LKB=∠BAE=22.5°;故①正确;②∵OG是AE的中垂线,∴AG=EG,∴∠AEG=∠EAG=22.5°=∠BAE,∴EG∥AB,故②正确;③∵∠LAO=∠GAO,∠AOL=∠AOG=90°,∴∠ALO=∠AGO,∵∠CGF=∠AGO,∠BLK=∠ALO,∴∠CGF=∠BLK,在Rt△BKL中,tan∠CGF=tan∠BLK=,故③正确;④连接EL,∵AL=AG=EG,EG∥AB,10∴四边形ALEG是菱形,∴AL=EL=EG>BL,∴,∵EG∥AB,∴△CEG∽△CBA,∴=,故④不正确;本题正确的是:①②③,故选:A.二、填空题(共6题,每题3分)9.(3分)如果水位升高2m时,水位的变化记为+2m,那么水位下降3m时,水位的变化情况是﹣3m.【解答】解:∵水位升高2m时水位变化记作+2m,∴水位下降3m时水位变化记作﹣3m.故答案是:﹣3m.10.(3分)如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE=n°.【解答】解:∵四边形ABCD是⊙O的内接四边形,11∴∠A+∠DCB=180°,又∵∠DCE+∠DCB=180°∴∠DCE=∠A=n°故答案为:n11.(3分)如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是18.【解答】解:∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD,∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=18,故答案为:18.12.(3分)关于x的方程ax2+4x﹣2=0(a≠0)有实数根,那么负整数a=﹣2(一个即可).【解答】解:∵关于x的方程ax2+4x﹣2=0(a≠0)有实数根,∴△=42+8a≥0,解得a≥﹣2,∴负整数a=﹣1或﹣2.12故答案为﹣2.13.(3分)一个书包的标价为115元,按8折出售仍可获利15%,该书包的进价为80元.【解答】解:设该书包的进价为x元,根据题意得:115×0.8﹣x=15%x,解得:x=80.答:该书包的进价为80元.故答案为:80.14.(3分)如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018=673个单位长度.【解答】解:由图可得,P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;∵2018=3×672+2,∴点P2018在正南方向上,∴P0P2018=672+1=673,故答案为:673.三、解答题15.(5分)计算﹣(﹣2)+(π﹣3.14)0++(﹣)﹣113【解答】解:原式=2+1+3﹣3=3.16.先化简,再求值(﹣)÷,其中a,b满足a+b﹣=0.【解答】解:原式=•=,由a+b﹣=0,得到a+b=,则原式=2.17.如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N是线段EF上两点,且EM=FN,连接AN,CM.(1)求证:△AFN≌△CEM;(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数.【解答】(1)证明:∵四边形ABCD是平行四边形
本文标题:云南省曲靖市2018年中考数学真题试题(含解析)
链接地址:https://www.777doc.com/doc-11219498 .html