您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 浙江省杭州市2018年中考数学真题试题(含解析)
浙江省杭州市2018年中考数学真题试题一、选择题1.=()A.3B.-3C.D.【答案】A【考点】绝对值及有理数的绝对值【解析】【解答】解:|-3|=3【分析】根据负数的绝对值等于它的相反数,即可求解。2.数据1800000用科学计数法表示为()A.1.86B.1.8×106C.18×105D.18×106【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:1800000=1.8×106【分析】根据科学计数法的表示形式为:a×10n。其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。3.下列计算正确的是()A.B.C.D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB、∵,因此A符合题意;B不符合题意;CD、∵,因此C、D不符合题意;故答案为:A【分析】根据二次根式的性质,对各选项逐一判断即可。4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。计算结果不受影响的是()A.方差B.标准差C.中位数D.平均数【答案】C【考点】中位数【解析】【解答】解:∵五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了∴中位数不会受影响故答案为:C【分析】抓住题中关键的已知条件:五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了,可知最高成绩提高,中位数不会变化。5.若线段AM,AN分别是△ABC边上的高线和中线,则()A.B.C.D.【答案】D【考点】垂线段最短【解析】【解答】解:∵线段AM,AN分别是△ABC边上的高线和中线,当BC边上的中线和高重合时,则AM=AN当BC边上的中线和高不重合时,则AM<AN∴AM≤AN故答案为:D【分析】根据垂线段最短,可得出答案。6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则()A.B.C.D.【答案】C【考点】二元一次方程的实际应用-鸡兔同笼问题【解析】【解答】根据题意得:5x-2y+0(20-x-y)=60,即5x-2y=60故答案为:C【分析】根据圆圆这次竞赛得分为60分,建立方程即可。7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.B.C.D.【答案】B【考点】概率公式,复合事件概率的计算【解析】【解答】解:根据题意可知,这个两位数可能是:31、32、33、34、35、36,,一共有6种可能得到的两位数是3的倍数的有:33、36两种可能∴P(两位数是3的倍数)=【分析】利用列举法求出所有可能的结果数及得到的两位数是3的倍数的可能数,利用概率公式求解即可。8.如图,已知点P矩形ABCD内一点(不含边界),设,,,,若,,则()A.B.C.D.【答案】A【考点】三角形内角和定理,矩形的性质【解析】【解答】解:∵矩形ABCD∴∠PAB+∠PAD=90°即∠PAB=90°-∠PAB∵∠PAB=80°∴∠PAB+∠PBA=180°-80°=100°∴90°-∠PAB+∠PBA=100°即∠PBA-∠PAB=10°①同理可得:∠PDC-∠PCB=180°-50°-90°=40°②由②-①得:∠PDC-∠PCB-(∠PBA-∠PAB)=30°∴故答案为:A【分析】根据矩形的性质,可得出∠PAB=90°-∠PAB,再根据三角形内角和定理可得出∠PAB+∠PBA=100°,从而可得出∠PBA-∠PAB=10°①;同理可证得∠PDC-∠PCB=40°②,再将②-①,可得出答案。9.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁【答案】B【考点】二次函数图象与系数的关系,二次函数的最值【解析】【解答】解:根据题意得:抛物线的顶点坐标为:(1,3)且图像经过(2,4)设抛物线的解析式为:y=a(x-1)2+3∴a+3=4解之:a=1∴抛物线的解析式为:y=(x-1)2+3=x2-2x+4当x=-1时,y=7,∴乙说法错误故答案为:B【分析】根据甲和丙的说法,可知抛物线的顶点坐标,再根据丁的说法,可知抛物线经过点(2,4),因此设函数解析式为顶点式,就可求出函数解析式,再对乙的说法作出判断,即可得出答案。10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()A.若,则B.若,则C.若,则D.若,则【答案】D【考点】三角形的面积,平行线分线段成比例【解析】【解答】解:如图,过点D作DF⊥AC于点F,过点B作BM⊥AC于点M∴DF∥BM,设DF=h1,BM=h2∴∵DE∥BC∴∴∵若∴设=k<0.5(0<k<0.5)∴AE=AC∙k,CE=AC-AE=AC(1-k),h1=h2k∵S1=AE∙h1=AC∙k∙h1,S2=CE∙h2=AC(1-k)h2∴3S1=k2ACh2,2S2=(1-K)∙ACh2∵0<k<0.5∴k2<(1-K)∴3S1<2S2故答案为:D【分析】过点D作DF⊥AC于点F,过点B作BM⊥AC于点M,可得出DF∥BM,设DF=h1,BM=h2,再根据DE∥BC,可证得,若,设=k<0.5(0<k<0.5),再分别求出3S1和2S2,根据k的取值范围,即可得出答案。二、填空题11.计算:a-3a=________。【答案】-2a【考点】合并同类项法则及应用【解析】【解答】解:a-3a=-2a故答案为:-2a【分析】利用合并同类项的法则计算即可。12.如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。【答案】135°【考点】对顶角、邻补角,平行线的性质【解析】【解答】解:∵a∥b∴∠1=∠3=45°∵∠2+∠3=180°∴∠2=180°-45°=135°故答案为:135°【分析】根据平行线的性质,可求出∠3的度数,再根据邻补角的定义,得出∠2+∠3=180°,从而可求出结果。13.因式分解:________【答案】【考点】提公因式法因式分解【解析】【解答】解:原式=(b-a)(b-a)-(b-a)=(b-a)(b-a-1)【分析】观察此多项式的特点,有公因式(b-a),因此提取公因式,即可求解。14.如图,AB是⊙的直径,点C是半径OA的中点,过点C作DE⊥AB,交O于点D,E两点,过点D作直径DF,连结AF,则∠DEA=________。【答案】30°【考点】垂径定理,圆周角定理【解析】【解答】解:∵DE⊥AB∴∠DCO=90°∵点C时半径OA的中点∴OC=OA=OD∴∠CDO=30°∴∠AOD=60°∵弧AD=弧AD∴∠DEA=∠AOD=30°故答案为:30°【分析】根据垂直的定义可证得△COD是直角三角形,再根据中点的定义及特殊角的三角函数值,可求出∠AOD的度数,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求出结果。15.某日上午,甲、乙两车先后从A地出发沿一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是________。【答案】60≤v≤80【考点】一次函数的图象,一次函数的实际应用,一次函数的性质【解析】【解答】解:根据题意得:甲车的速度为120÷3=40千米/小时2≤t≤3若10点追上,则v=2×40=80千米/小时若11点追上,则2v=120,即v=60千米/小时∴60≤v≤80故答案为:60≤v≤80【分析】根据函数图像可得出甲车的速度,再根据乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,可得出t的取值范围,从而可求出v的取值范围。16.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在直线AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=________。【答案】或3【考点】勾股定理,矩形的性质,正方形的性质,翻折变换(折叠问题)【解析】【解答】∵当点H在线段AE上时把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上∴四边形ADFE是正方形∴AD=AE∵AH=AE-EH=AD-1∵把△CDG翻折,点C落在直线AE上的点H处,折痕为DG,点G在BC边上∴DC=DH=AB=AD+2在Rt△ADH中,AD2+AH2=DH2∴AD2+(AD-1)2=(AD+2)2解之:AD=3+2,AD=3-2(舍去)∴AD=3+2当点H在线段BE上时则AH=AE-EH=AD+1在Rt△ADH中,AD2+AH2=DH2∴AD2+(AD+1)2=(AD+2)2解之:AD=3,AD=-1(舍去)故答案为:或3【分析】分两种情况:当点H在线段AE上;当点H在线段BE上。根据①的折叠,可得出四边形ADFE是正方形,根据正方形的性质可得出AD=AE,从而可得出AH=AD-1(或AH=AD+1),再根据②的折叠可得出DH=AD+2,然后根据勾股定理求出AD的长。三、简答题17.已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时)。(1)求v关于t的函数表达式(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?【答案】(1)有题意可得:100=vt,则(2)∵不超过5小时卸完船上的这批货物,∴t≦5,则v≧=20答:平均每小时至少要卸货20吨。【考点】一元一次不等式的应用,反比例函数的性质,根据实际问题列反比例函数关系式【解析】【分析】(1)根据已知易求出函数解析式。(2)根据要求不超过5小时卸完船上的这批货物,可得出t的取值范围,再求出t=5时的函数值,就可得出答案。18.某校积极参与垃圾分类活动,以班级为单位收集可回收的垃圾,下面是七年级各班一周收集的可回收垃圾的质量频数和频数直方图(每组含前一个边界值,不含后一个边界值)。(1)求a的值。(2)已知收集的可回收垃圾以0.8元/kg被回收,该年级这周收集的可回收垃圾被回收后所得的金额能否达到50元。【答案】(1)观察频数分布直方图可得出a=4(2)设收集的可回收垃圾总质量为W,总金额为Q∵每组含前一个边界值,不含后一个边界W<2×4.5+4×5+3×5.5+1×6=51.5kgQ<515×0.8=41.2元∵41.2<50∴该年级这周的可回收垃圾被回收后所得全额不能达到50元。【考点】频数(率)分布表,频数(率)分布直方图【解析】【分析】(1)观察频数分布直方图,可得出a的值。(2)设收集的可回收垃圾总质量为W,总金额为Q,根据每组含前一个边界值,不含后一个边界,求出w和Q的取值范围,比较大小,即可求解。19.如图,在△ABC中,AB=AC,AD为BC边上的中线DE⊥AB于点E。(1)求证:△BDE∽△CAD。(2)若AB=13,BC=10,求线段DE的长【答案】(1)证明:∵AB=AC,∴∠ABC=∠ACB,△ABC为等腰三角形∵AD是BC边上中线∴BD=CD,AD⊥BC又∵DE⊥AB∴∠DEB=∠ADC又∵∠ABC=∠ACB∴△BDE∽△CAD(2)∵AB=13,BC=10BD=CD=BC=5,AD2+BD2=AB2AD=12∵△BDE∽△CAD∴,即∴DE=【考点】等腰三角形的性质,勾股定理,相似三角形的判定与性质【解析】【分析】(1)根据已知易证△ABC为等腰三角形,再根据等腰三角形的性质及垂直的定义证明∠DEB=∠ADC,根据两组角对应相等的两三角形是相似三角形,即
本文标题:浙江省杭州市2018年中考数学真题试题(含解析)
链接地址:https://www.777doc.com/doc-11219676 .html